Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Solve in Maxima: Of course, we should segregate wastes, but the problem is that the industry produces too many plastic packing. Why? Because the demand

Solve in Maxima:

Of course, we should segregate wastes, but the problem is that the industry produces too many plastic packing. Why? Because the demand of the consumer-related industries is (and will be) growing fast. The production of plastic packing should be constrained.

Let's analyse the problem using the simple partial equilibrium model.

We have three collective actors:

* the packing industry - the supplier of plastic packing

* consumer-related industries - demand side of the plastic packing market.

* consumers (society) who are the recipients of externalities of the production of the packing industry. Externalities can be positive or negative. Packing protects consumer goods - positive. Littering the earth - negative. After achieving a saturation point, the production of plastic packing generates negative externalities.

Let's assume that the partial equilibrium model is an approximation of market conditions:

demand: q = 200*N - 3pd =

supply: q = -100 + 2ps

equilibrium: pd = ps

Production of plastic packing generates the externalities EX which can be approximated by a function: EX = 120*q - 0.04*q^2

b) Society stops to be passive and start to boycott the plastic packing. The boycott causes a decrease of demand by the factor b.

demand: q = b*(200*N - 3pd ) = .. [b > 0 and b <1]

supply: q = -100 + 2ps

equilibrium: pd = ps

How the boycott influence social welfare when society wants to reduce the externality effect to zero EX = 0 (for q>0)? Compare with the benchmark situation. Analyze the obtained results. Determine the impact of the boycott on this market. (11p)

[Hint: present: equilibrium condition (q*, pd* = ps*) , consumer surplus (CS), producer surplus (PS), externalities EX, Social Welfare SW = CS + SP + EX as functions of b and graph the functions. Modify the Maxima codes].

kill(all)$

load(draw)$

assume(p_s>0,p_d>0,q>0, q_star>0)$

/* Demand function*/

eq1:q = b*(1000 - 5*p_d)$

solve([eq1],[p_d])$

p_d:rhs(%[1])$ /* Inverse demand function */

/* Suplly function */

eq2: q = (-250 + 2*p_s)$

solve([eq2],[p_s])$

p_s:rhs(%[1])$ /* Inverse suplly function */

/* Equlibrium */

eq3: p_d = p_s$

solve([eq3],[q])$

q_star:rhs(%[1])$

q:ev(''q_star)$

p_s_star:ev(''p_s)$

p_d_star:ev(''p_d)$

kill(q)$

CS: ev(integrate(''p_d, q, 0, ''q_star) - integrate(''p_d_star, q, 0, ''q_star))$

PS: ev(integrate(''p_s_star, q, 0, ''q_star) - integrate (''p_s, q, 0, ''q_star))$

EX : - 0.5*''q_star^2 + 30*q_star $

SW: ev(''CS + ''PS + EX)$

draw2d(

grid= true,

xlabel = "b",

ylabel = "PS, CS, EX, SW",

color = grey,

color = red,

key = " CS ",

explicit(''CS,b,0,1),

color = light-green,

key = " PS ",

explicit(''PS,b,0,1),

color = light-blue,

key = " SW ",

explicit(''SW,b,0,1),

color = brown,

key = " EX ",

explicit(''EX,b,0,1) ) $

kill(all)$

load(draw)$

assume(p_s>0,p_d>0,q>0,q>0,q_star>0)$

/* Demand function*/

eq1:q = b*(1000 - 5*p_d)$

solve([eq1],[p_d])$

p_d:rhs(%[1])$ /* Inverse demand function */

/* Suplly function */

eq2:q = (-250 + 2*p_s)$

solve([eq2],[p_s])$

p_s:rhs(%[1])$ /* Inverse suplly function */

/* Equlibrium */

eq3: p_d = p_s$

solve([eq3],[q])$

q_star:rhs(%[1])$

q:ev(''q_star)$

p_s_star:ev(''p_s)$

p_d_star:ev(''p_d)$

kill(q)$

EX : - 0.5*''q_star^2 + 30*q_star $

eq1: ''EX = 0;

solve(eq1,b);

b_0: float(rhs(%[1]));

print("*****results***************" )$

print("EX = 0 for b = ", float(b_0))$

kill(all)$

load(draw)$

assume(p_s>0,p_d>0,q>0,q>0,q_star>0)$

b: 0.267; /* insert b */

/* Demand function*/

eq1:q = b*(1000 - 5*p_d)$

solve([eq1],[p_d])$

p_d:rhs(%[1])$ /* Inverse demand function */

/* Suplly function */

eq2:q = (-250 + 2*p_s)$

solve([eq2],[p_s])$

p_s:rhs(%[1])$ /* Inverse suplly function */

/* Equlibrium */

eq3: p_d = p_s$

solve([eq3],[q])$

q_star:rhs(%[1])$

q:ev(''q_star)$

p_s_star:ev(''p_s)$

p_d_star:ev(''p_d)$

kill(q)$

CS: ev(integrate(''p_d, q, 0, ''q_star) - integrate(''p_d_star, q, 0, ''q_star));

PS: ev(integrate(''p_s_star, q, 0, ''q_star) - integrate (''p_s, q, 0, ''q_star));

EX: 500*''q_star - 0.01*''q_star^2;

SW: ev(''CS + ''PS + EX);

print("*****results***************" )$

print("q = ", float(q_star) )$

print("p_d = ", float(p_d_star) )$

print("p_s = ", float(p_s_star) )$

print("PS = ", float(PS) )$

print("CS = ", float(CS) )$

print("EX = ", float(EX) )$

print("SW = ", float(SW))$

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Data Mining Concepts And Techniques

Authors: Jiawei Han, Micheline Kamber, Jian Pei

3rd Edition

0123814790, 9780123814791

More Books

Students also viewed these Databases questions