Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Some of the following questions ask for a closed-form formula. This is a formula that is non- recursive and doesn's use the summation () or

image text in transcribed

image text in transcribed

Some of the following questions ask for a closed-form formula. This is a formula that is non- recursive and doesn's use the summation () or product (IT) notation. These formulas can use any of the special functions we've seen in class, including the factorial function and binomial coefficients. 4. Consider the set An of strings over the 4-character alphabet {a,b,c,d} whose length is n and for which cc does not appear as a consecutive substring. For example: A] = {f} Az = {a,b,c,d} A2 = {aa, ab, ac, ad, ba, bb, bc, bd, ca,cb, x, cd, da, db, dc, dd) Write a recurrence for An). Then, using induction, show that this recurrence solves to Anl= (1/2+5.21/42). " ++(1/2-5./21/42) - BM , where a =(3+ 21)/2 and 3 = (3-21)/2. 5. Consider the set Sn of binary strings whose length is n and for which 010 does not appear as a consecutive substring. For example, So = {{}, Si = {0,1}, S2 = {00,01, 10, 11}, S3 = {000,001, OY,011, 100, 101, 110, 111} S4 = {0000, 0001, 0010, 0011, 0100, 011, 0110,0111, 1000, 1001, 100, 1011, 1100, 1101, 1110, 1111} a. Argue that for n > 3, Sn] = \Sn-1]+) Sn-k] +2. ke-3 Some of the following questions ask for a closed-form formula. This is a formula that is non- recursive and doesn's use the summation () or product (IT) notation. These formulas can use any of the special functions we've seen in class, including the factorial function and binomial coefficients. 4. Consider the set An of strings over the 4-character alphabet {a,b,c,d} whose length is n and for which cc does not appear as a consecutive substring. For example: A] = {f} Az = {a,b,c,d} A2 = {aa, ab, ac, ad, ba, bb, bc, bd, ca,cb, x, cd, da, db, dc, dd) Write a recurrence for An). Then, using induction, show that this recurrence solves to Anl= (1/2+5.21/42). " ++(1/2-5./21/42) - BM , where a =(3+ 21)/2 and 3 = (3-21)/2. 5. Consider the set Sn of binary strings whose length is n and for which 010 does not appear as a consecutive substring. For example, So = {{}, Si = {0,1}, S2 = {00,01, 10, 11}, S3 = {000,001, OY,011, 100, 101, 110, 111} S4 = {0000, 0001, 0010, 0011, 0100, 011, 0110,0111, 1000, 1001, 100, 1011, 1100, 1101, 1110, 1111} a. Argue that for n > 3, Sn] = \Sn-1]+) Sn-k] +2. ke-3

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

OCA Oracle Database SQL Exam Guide Exam 1Z0-071

Authors: Steve O'Hearn

1st Edition

1259585492, 978-1259585494

More Books

Students also viewed these Databases questions

Question

What are the potential limitations of group discussion?

Answered: 1 week ago