Question
Suppose that you are extracting copper in a foreign country under a concession that will expire in 2 years. The current period is t=0, and
Suppose that you are extracting copper in a foreign country under a concession that will expire in 2 years. The current period is t=0, and you are managing the extraction activities over the interval t={0,1}, where rents in period t is given by (t) =pqt(c/2)q2t,where qt is the amount of copper extracted in period t, p>0 is the fixed unit price for qt over the life of the concession, and c >0 is a cost parameter. Let St0 denote remaining reserves in period t, which shrink according to St+1=Stqt, where S0 is the initial stock of copper.
A. Suppose your goal is to maximize discounted profits over 2 years with a discount factor of = 1/(1+r). Write down the Lagrangian that corresponds to the constrained maximization problem. Solve for the first-order conditions and interpret them.
B. Suppose we have the following parameter values:p= 1;c= 4;r= 0.05; and S0= 1.
i) Solve for the optimal extraction path over the two periods. Your answer should be numbers, not parameters.
ii) Should you extract the entire copper deposit if you only have two periods?Why or why not?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started