Question: Suppose two friends live in different cities on a map, such as the Romania map shown in Figure 3 . 2 . On every turn,

Suppose two friends live in different cities on a map, such as the Romania map shown in Figure 3.2. On every turn, we can simultaneously move each friend to a neighboring city on the map. The amount of time needed to move from city i to neighbor j is equal to the road distance d(i, j) between the cities, but on each turn the friend that arrives first must wait until the other one arrives (and calls the first on his/her cell phone) before the next turn can begin. We want the two friends to meet as quickly as possible.
a. Write a detailed formulation for this search problem. (You will find it helpful to define
some formal notation here.)
b. Let D(i, j) be the straight-line distance between cities i and j. Which of the following
heuristic functions are admissible? (i) D(i, j); (ii)2 D(i, j); (iii) D(i, j)/2.
c. Are there completely connected maps for which no solution exists?
d. Are there maps in which all solutions require one friend to visit the same city twice?
Which of the following are true and which are false? Explain your answers.
a. Depth-first search always expands at least as many nodes as A search with an admissible heuristic.
b. h(n)=0 is an admissible heuristic for the 8-puzzle.
c. A is of no use in robotics because percepts, states, and actions are continuous.
d. Breadth-first search is complete even if zero step costs are allowed.
e. Assume that a rook can move on a chessboard any number of squares in a straight line,vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an admissible heuristic for the problem of moving the rook from square A to square B in
the smallest number of moves.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!