Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Suppose we have an proton (a spin 2 1 particle), initially in the |z state. The proton has charge e , mass m , and

Suppose we have an proton (a spin21 particle), initially in the |z state. The proton has charge e, mass m, and gyromagnetic moment >0. What we really want though, for our new experiment, is a proton oriented in such a way that when we measure the spin of the proton along the direction n^=21(x^+y^), we always end up measuring /2.

Luckily we're able to apply magnetic fields, which can rotate an proton's spin vector.

However, we're only able to apply magnetic fields of strength B0 along one of the x^,y^ orz^ directions, but we can apply a magnetic field for however we want, and we can also apply different magnetic fields in a sequence (for example, we could applyB1=B0z^ for one second, thenB2=B0x^ for three seconds, then another field, etc... but neverB4=B0(2x^+y^) or B5=2B0z^)

Describe a short sequence of magnetic fields we could apply so that we get an proton definitely in the state |n

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Quantitative Methods For Business

Authors: David Anderson, Dennis Sweeney, Thomas Williams, Jeffrey Cam

11th Edition

978-0324651812, 324651813, 978-0324651751

Students also viewed these Physics questions

Question

Differentiate the function. r(z) = 2-8 - 21/2 r'(z) =

Answered: 1 week ago