Table 2: GMM Estimation Results and Asymptotic Standard Errors MLB NBA NFL Fan Cost Index -0.584 -0.160* 0.061 0.319 0.063 0.061 Ticket price -0.269* -0.119* 0.028 0.158 0.046 0.052 Win % 1.675* 1.661* 0.308* 0.313* 0.184* 0.184* 0.177 0.179 0.041 0.041 0.031 0.031 Playoffs 0.01 0.007 -0.008 -0.009 0.002 0.003 0.03 0.029 0.014 0.014 0.014 0.014 Lagged win % -0.274 -0.339 0.013 0.012 -0.019 -0.016 0.211 0.196 0.05 0.049 0.042 0.042 Stadium age -0.008 -0.011 -0.045* -0.044* -0.017 -0.018 0.014 0.014 0.008 0.008 0.007 0.008 Team age -0.003 0.002 0.015 0.014 0.018 0.017 0.017 0.018 0.008 0.008 0.009 0.009 Income per capita 0.092 0.005 0.153* 0.143 0.005 0.021 0.138 0.102 0.048 0.046 0.047 0.046 Lagged attendance 0.849* 0.837* 0.748* 0.749* 0.774* 0.782* 0.065 0.063 0.038 0.038 0.038 0.038 Population 0.062* 0.054* 0.021* 0.015 0.005 0.006 0.024 0.021 0.01 0.008 0.006 0.006 Final season 0.075 0.059 0.075 0.075 -0.01 -0.009 0.063 0.062 0.153 0.151 0.028 0.028 A B A B A B In the second table, each row has two numbers: the number on the top is the coefficient and the number below is the standard error. For example, the coefficient for win % is 1.675 for MLB (the standard error is 0.177). The first column of numbers for each sport estimates demand using the fan cost index and the second column uses the ticket price. The first table does not include the average prices, however, here they are: MLB average ticket price = $38 ; NBA average ticket price = $79; NFL average ticket price = $118. Attendance should be divided by 1000 units. i.e. attendance of 28,568 should be thought of as 28.568. 1. (12) What is the ticket price elasticity for each sport, MLB, NFL and NBA? Show all math. [FYI: Use column B for each sport in table 2 to calculate Price elasticity]