Question
The below regression output is generated from a dataset used in the evaluation of these changes. The dependent variable is Satisfaction (with the Financial Advisor)
The below regression output is generated from a dataset used in the evaluation of these changes.
The dependent variable is Satisfaction (with the Financial Advisor)
The independent variables are:
Commission: This is a scale variable that reflcts an index of the value of the commission charged by the FA. 1 would reflect a lower commission and 10 would reflect the highest commission paid by the client
Tenure: This is a scale variable representing the number of years the FA has been involved iin selling products.
Size: A scale variable representing the relative size of the product's forecasted final value.
CPD: This variable indicates how many Continuous Professional Development Points the FA has accumulated in the previous CPD cycle provider.
Not__RA This variable is a dummy where where 0 is the reference category of Retirement Annuity products and 1 is coded as all other financial products sold by the FA.
Relcost: Relates to the relative cost of the products monthly premium
NOTE The SPSS Regression output is in the excel ouputs file.
4a. Evaluate the regression model in terms of its validity and usefulness. Be sure to highlight any model issues which are apparent and make recommendations as to how the model could be restructured. (15)
4b Some financial advisors argue that the costs of CPD are prohibitive and do not add any value to clients. They argue further that tenure of the FA in the industry is a better proxy for the skillset that leads to customer satisfaction.
Use the model to assess this argument.
(5)
Descriptive Statistics
Mean Std. Deviation N
Satisfaction 5,442 1,2084 100
Commission 7,810 1,3963 100
Tenure 3,672 0,7005 100
Size 5,365 1,5305 100
CPD 58,400 8,8609 100
Not_RA 0,48 0,502 100
Relcost 3,6240 0,64537 100
Correlations
Satisfaction Commission Tenure Size CPD Not_RA Relcost
Pearson Correlation Satisfaction 1,000 0,106 0,140 0,097 0,610 -0,037 0,120
Commission 0,106 1,000 -0,137 0,096 0,569 -0,111 -0,075
Tenure 0,140 -0,137 1,000 0,001 0,138 0,102 0,920
Size 0,097 0,096 0,001 1,000 -0,011 0,001 -0,006
CPD 0,610 0,569 0,138 -0,011 1,000 -0,223 0,154
Not_RA -0,037 -0,111 0,102 0,001 -0,223 1,000 0,130
Relcost 0,120 -0,075 0,920 -0,006 0,154 0,130 1,000
Sig. (1-tailed) Satisfaction 0,146 0,082 0,169 0,000 0,358 0,116
Commission 0,146 0,087 0,172 0,000 0,137 0,230
Tenure 0,082 0,087 0,497 0,086 0,157 0,000
Size 0,169 0,172 0,497 0,458 0,496 0,476
CPD 0,000 0,000 0,086 0,458 0,013 0,062
Not_RA 0,358 0,137 0,157 0,496 0,013 0,098
Relcost 0,116 0,230 0,000 0,476 0,062 0,098
N Satisfaction 100 100 100 100 100 100 100
Commission 100 100 100 100 100 100 100
Tenure 100 100 100 100 100 100 100
Size 100 100 100 100 100 100 100
CPD 100 100 100 100 100 100 100
Not_RA 100 100 100 100 100 100 100
Relcost 100 100 100 100 100 100 100
Variables Entered/Removeda
Model Variables Entered Variables Removed Method
1 Relcost, Size, Commission, Not_RA, CPD, Tenureb Enter
a. Dependent Variable: Satisfaction
b. All requested variables entered.
Model Summaryb
Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson
1 .702a 0,493 0,460 0,8877 2,001
a. Predictors: (Constant), Relcost, Size, Commission, Not_RA, CPD, Tenure
b. Dependent Variable: Satisfaction
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1 Regression 71,283 6 11,880 15,077 .000b
Residual 73,281 93 0,788
Total 144,564 99
a. Dependent Variable: Satisfaction
b. Predictors: (Constant), Relcost, Size, Commission, Not_RA, CPD, Tenure
Coefficientsa
Model Unstandardized Coefficients Standardized Coefficients t Sig. 95.0% Confidence Interval for B Collinearity Statistics
B Std. Error Beta Lower Bound Upper Bound Tolerance VIF
1 (Constant) 0,790 0,847 0,932 0,354 -0,892 2,472
Commission -0,337 0,082 -0,389 -4,112 0,000 -0,499 -0,174 0,609 1,641
Tenure 0,089 0,332 0,052 0,268 0,789 -0,571 0,749 0,147 6,811
Size 0,112 0,059 0,142 1,910 0,059 -0,004 0,229 0,982 1,018
CPD 0,119 0,013 0,870 9,062 0,000 0,093 0,145 0,592 1,690
Not_RA 0,295 0,185 0,123 1,592 0,115 -0,073 0,664 0,918 1,090
Relcost -0,198 0,358 -0,106 -0,552 0,582 -0,908 0,513 0,149 6,695
a. Dependent Variable: Satisfaction
Collinearity Diagnosticsa
Model Eigenvalue Condition Index Variance Proportions
(Constant) Commission Tenure Size CPD Not_RA Relcost
1 1 6,372 1,000 0,00 0,00 0,00 0,00 0,00 0,01 0,00
2 0,485 3,623 0,00 0,00 0,00 0,00 0,00 0,89 0,00
3 0,072 9,434 0,00 0,00 0,01 0,74 0,00 0,00 0,01
4 0,049 11,367 0,00 0,15 0,02 0,15 0,04 0,03 0,01
5 0,010 25,305 0,27 0,79 0,01 0,00 0,35 0,01 0,02
6 0,009 27,079 0,72 0,03 0,00 0,10 0,60 0,06 0,00
7 0,003 50,481 0,00 0,04 0,95 0,00 0,01 0,01 0,96
a. Dependent Variable: Satisfaction
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started