Answered step by step
Verified Expert Solution
Question
1 Approved Answer
The function f(x) = x2 -2x + x1/2 is: A. A polynomial because it is continuous. B. A polynomial because it is of the form
The function f(x) = x2 -2x + x1/2 is: A. A polynomial because it is continuous. B. A polynomial because it is of the form axn. C. Not a polynomial because you are subtracting 2x. D. Not a polynomial because you can't have any fractional exponents. The function f(x) = -x3 -2x has: Odd degree, rises to left and falls to the right. Even degree, rises to left and falls to the right. Odd degree, falls to the left and rises to the right. Even degree, falls to the left and rises to the right. A zero of a polynomial is: A real number that makes f(x) = 0 A real number that makes x = 0 A real or complex number that makes f(x) = 0 A real or complex number that makes x = 0 What are the factors of a polynomial with the following zeroes: -1, , 2 (x-1)(x+)(x-2) (x-1)(3x-2)(x-2) (x+1)(x-)(x+2) (x+1)(3x-2)(x-2) What is the quotient of: 4x3+5x2-12x+27/(x+3) 4x2 - 7x + 9 4x2 + 7x + 9 4x2 - 7x + 27 4x2 + 7x + 27 What are all possible factors of: 3x3 + 4x -12 ? 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 9, -9, 12, -12, 18, -18, 36, -36 -1, -2, -3, -4, -6, 6, 9, 12, 18, 36 1, 2, 3, 4, 6, -6, -9, -12, -18, -36 1, -1, 2, -2, 3, -3, 1/3, -1/3, 2/3, -2/3, 4, -4, 4/3, -4/3, 6, -6, 12, -12 What are all possible factors of: 3x3 + 4x -12 ? 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 9, -9, 12, -12, 18, -18, 36, -36 -1, -2, -3, -4, -6, 6, 9, 12, 18, 36 1, 2, 3, 4, 6, -6, -9, -12, -18, -36 1, -1, 2, -2, 3, -3, 1/3, -1/3, 2/3, -2/3, 4, -4, 4/3, -4/3, 6, -6, 12, -12 How many possible negative roots of: 3x3 + 4x -12 ? None One Two Three
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started