Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

The spread sheet contains quarterly data on a house price index for the greater Houston Metro Area. Estimate a regression using a linear trend and

The spread sheet contains quarterly data on a house price index for the greater Houston Metro Area. Estimate a regression using a linear trend and 3 quarterly dummy variables (keep the intercept and drop the 4th quarter) to look for any seasonal pattern in price levels.

Next calculate the percentage change in the house price index and run the same regression in percentage changes rather than levels to test for any seasonality. Again, use a linear time trend and 3 quarterly dummy variables (keep the intercept and drop the 4th quarter). What can you conclude looking at your regression estimates about seasonality in Houston home prices

Frequency: Quarterly Price Index
1990-01-01 91.46
1990-04-01 92.52
1990-07-01 93.72
1990-10-01 93.53
1991-01-01 94.46
1991-04-01 95.63
1991-07-01 96.19
1991-10-01 97.17
1992-01-01 98.88
1992-04-01 98.39
1992-07-01 100.16
1992-10-01 100.06
1993-01-01 100.36
1993-04-01 100.84
1993-07-01 101.65
1993-10-01 102.23
1994-01-01 102.23
1994-04-01 101.67
1994-07-01 101.66
1994-10-01 100.22
1995-01-01 100.00
1995-04-01 101.66
1995-07-01 102.14
1995-10-01 102.70
1996-01-01 104.23
1996-04-01 103.74
1996-07-01 104.00
1996-10-01 104.65
1997-01-01 104.50
1997-04-01 106.23
1997-07-01 107.30
1997-10-01 108.43
1998-01-01 110.89
1998-04-01 111.97
1998-07-01 114.30
1998-10-01 115.71
1999-01-01 117.27
1999-04-01 120.27
1999-07-01 123.22
1999-10-01 125.75
2000-01-01 127.27
2000-04-01 129.25
2000-07-01 130.99
2000-10-01 132.06
2001-01-01 136.31
2001-04-01 137.76
2001-07-01 139.61
2001-10-01 141.01
2002-01-01 141.72
2002-04-01 143.52
2002-07-01 145.27
2002-10-01 147.38
2003-01-01 148.46
2003-04-01 149.38
2003-07-01 150.28
2003-10-01 151.79
2004-01-01 153.30
2004-04-01 154.73
2004-07-01 156.85
2004-10-01 157.77
2005-01-01 160.13
2005-04-01 161.49
2005-07-01 163.62
2005-10-01 166.34
2006-01-01 168.80
2006-04-01 171.27
2006-07-01 173.68
2006-10-01 175.14
2007-01-01 177.47
2007-04-01 180.48
2007-07-01 181.12
2007-10-01 182.27
2008-01-01 184.38
2008-04-01 184.93
2008-07-01 186.04
2008-10-01 185.66
2009-01-01 188.34
2009-04-01 186.72
2009-07-01 185.54
2009-10-01 185.15
2010-01-01 183.81
2010-04-01 184.23
2010-07-01 184.86
2010-10-01 184.64
2011-01-01 181.31
2011-04-01 180.89
2011-07-01 182.27
2011-10-01 183.00
2012-01-01 183.93
2012-04-01 186.46
2012-07-01 188.01
2012-10-01 189.92
2013-01-01 191.99
2013-04-01 195.82
2013-07-01 200.72
2013-10-01 205.34
2014-01-01 209.69
2014-04-01 217.28
2014-07-01 224.55
2014-10-01 228.27
2015-01-01 230.72
2015-04-01 237.54
2015-07-01 240.58
2015-10-01 241.34
2016-01-01 242.38
2016-04-01 246.93
2016-07-01 250.15
2016-10-01 251.74
2017-01-01 254.30
2017-04-01 259.50
2017-07-01 260.66
2017-10-01 264.18
2018-01-01 266.03
2018-04-01 272.59
2018-07-01 276.90
2018-10-01 276.34
2019-01-01 279.37
2019-04-01 282.80
2019-07-01 287.66
2019-10-01 287.68
2020-01-01 291.89
2020-04-01 294.43

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Forecasting With Forecast X

Authors: Holton Wilson, Barry Keating, John Solutions Inc

6th Edition

73373648, 978-9339220426, 9339220420, 978-0073373645

More Books

Students also viewed these Mathematics questions