Question
This exercise asks you to apply the Fama-French 3 factor model to evaluate how risk factor sensitivity is estimated at the portfolio level. Rei,t=i+i,MReMKT+i,SMBSMBt+i,HMLHMLt+ei,tRi,te=i+i,MRMKTe+i,SMBSMBt+i,HMLHMLt+ei,t To
This exercise asks you to apply the Fama-French 3 factor model to evaluate how risk factor sensitivity is estimated at the portfolio level.
Rei,t=i+i,MReMKT+i,SMBSMBt+i,HMLHMLt+ei,tRi,te=i+i,MRMKTe+i,SMBSMBt+i,HMLHMLt+ei,t
To simplify notation in the regression notice that:
Rei,t=Ri,tRF,t=Ri,te=Ri,tRF,t= is stock or portfolio ithith excess return and ReMKT=RMtRF,t=RMKTe=RMtRF,t= is the excess return on a "stock market portfolio".
SMB = Small Minus Big, i.e., the return of a portfolio of small stocks in excess of the return on a portfolio of large stocks.
HML = High Minus Low, i.e., the return of a portfolio of stocks with a high book-to-market ratio in excess of the return on a portfolio of stocks with a low book-to-market ratio.
Consider the monthly returns from Nov-2007 to October 2017 produced by a popular mutual fund: Fidelity Magellan (FMAGX). This fund seeks capital appreciation. The fund invests primarily in common stocks. It invests in either "growth" stocks or "value" stocks or both.
DATE | MKT | SMB | HML | RETX_TRMCX |
2007M11 | -4.83 | -2.63 | -1.18 | -4.24 |
2007M12 | -0.87 | 0.2 | -0.52 | -13.52 |
2008M01 | -6.36 | -0.89 | 3.65 | 10.28 |
2008M02 | -3.09 | -0.23 | -0.95 | -2.93 |
2008M03 | -0.93 | 0.94 | -0.15 | -0.93 |
2008M04 | 4.6 | -1.64 | -0.96 | 4.06 |
2008M05 | 1.86 | 3.21 | -1.38 | 2.29 |
2008M06 | -8.44 | 1.27 | -2.43 | -8.15 |
2008M07 | -0.77 | 2.47 | 5.81 | -0.25 |
2008M08 | 1.53 | 3.61 | 1.56 | 1.81 |
2008M09 | -9.24 | -1.13 | 6.33 | -8.48 |
2008M10 | -17.23 | -2.33 | -2.89 | -19.70 |
2008M11 | -7.86 | -2.99 | -5.94 | -8.23 |
2008M12 | 1.74 | 3.59 | -0.24 | 0.35 |
2009M01 | -8.12 | -0.01 | -11.1 | -4.49 |
2009M02 | -10.1 | 0.17 | -7.25 | -8.78 |
2009M03 | 8.95 | -0.09 | 3.53 | 9.34 |
2009M04 | 10.19 | 4.83 | 5.46 | 16.66 |
2009M05 | 5.21 | -2.33 | -0.21 | 4.81 |
2009M06 | 0.43 | 2.61 | -2.71 | 0.86 |
2009M07 | 7.72 | 2.07 | 5.28 | 9.14 |
2009M08 | 3.33 | -0.9 | 7.76 | 5.50 |
2009M09 | 4.08 | 2.45 | 0.92 | 6.23 |
2009M10 | -2.59 | -4.22 | -4.17 | -4.62 |
2009M11 | 5.56 | -2.49 | -0.17 | 5.16 |
2009M12 | 2.75 | 6.11 | 0.01 | 3.69 |
2010M01 | -3.36 | 0.38 | 0.31 | -2.34 |
2010M02 | 3.4 | 1.2 | 3.16 | 3.25 |
2010M03 | 6.31 | 1.42 | 2.1 | 6.32 |
2010M04 | 2 | 4.98 | 2.81 | 3.76 |
2010M05 | -7.89 | 0.05 | -2.38 | -6.93 |
2010M06 | -5.56 | -1.97 | -4.5 | -6.70 |
2010M07 | 6.93 | 0.16 | -0.27 | 6.25 |
2010M08 | -4.77 | -3 | -1.95 | -5.23 |
2010M09 | 9.54 | 3.92 | -3.12 | 9.56 |
2010M10 | 3.88 | 1.15 | -2.59 | 2.05 |
2010M11 | 0.6 | 3.7 | -0.9 | 0.75 |
2010M12 | 6.82 | 0.7 | 3.81 | 5.41 |
2011M01 | 1.99 | -2.47 | 0.81 | 2.75 |
2011M02 | 3.49 | 1.52 | 1.09 | 4.42 |
2011M03 | 0.45 | 2.6 | -1.55 | 0.31 |
2011M04 | 2.9 | -0.34 | -2.51 | 2.51 |
2011M05 | -1.27 | -0.7 | -2.06 | -0.66 |
2011M06 | -1.75 | -0.18 | -0.31 | -1.80 |
2011M07 | -2.36 | -1.31 | -1.23 | -1.99 |
2011M08 | -5.99 | -3.06 | -2.44 | -8.35 |
2011M09 | -7.59 | -3.48 | -1.46 | -8.08 |
2011M10 | 11.35 | 3.41 | -0.17 | 10.04 |
2011M11 | -0.28 | -0.17 | -0.35 | -1.32 |
2011M12 | 0.74 | -0.71 | 1.74 | -4.89 |
2012M01 | 5.05 | 2.15 | -1.09 | 10.83 |
2012M02 | 4.42 | -1.75 | 0.09 | 4.14 |
2012M03 | 3.11 | -0.61 | 0.87 | 1.84 |
2012M04 | -0.85 | -0.52 | -0.47 | -0.59 |
2012M05 | -6.19 | 0.02 | -0.62 | -6.80 |
2012M06 | 3.89 | 0.77 | 0.44 | 4.48 |
2012M07 | 0.79 | -2.58 | -0.25 | 1.99 |
2012M08 | 2.55 | 0.41 | 1.28 | 3.43 |
2012M09 | 2.73 | 0.5 | 1.52 | 2.66 |
2012M10 | -1.76 | -1.14 | 3.79 | -0.49 |
2012M11 | 0.78 | 0.59 | -0.96 | 0.79 |
2012M12 | 1.18 | 1.47 | 3.55 | -4.16 |
2013M01 | 5.57 | 0.39 | 0.92 | 12.64 |
2013M02 | 1.29 | -0.45 | 0 | 1.57 |
2013M03 | 4.03 | 0.79 | -0.26 | 4.26 |
2013M04 | 1.55 | -2.44 | 0.59 | 0.41 |
2013M05 | 2.8 | 1.67 | 2.55 | 2.11 |
2013M06 | -1.2 | 1.22 | -0.19 | -1.30 |
2013M07 | 5.65 | 1.86 | 0.55 | 5.39 |
2013M08 | -2.71 | 0.3 | -2.78 | -3.52 |
2013M09 | 3.77 | 2.94 | -1.18 | 4.51 |
2013M10 | 4.18 | -1.49 | 1.15 | 4.11 |
2013M11 | 3.12 | 1.24 | 0.24 | 1.33 |
2013M12 | 2.81 | -0.5 | -0.3 | -1.67 |
2014M01 | -3.32 | 0.87 | -2.08 | 2.20 |
2014M02 | 4.65 | 0.33 | -0.39 | 5.00 |
2014M03 | 0.43 | -1.89 | 5.09 | 1.73 |
2014M04 | -0.19 | -4.25 | 1.14 | 0.48 |
2014M05 | 2.06 | -1.83 | -0.26 | 1.98 |
2014M06 | 2.61 | 3.06 | -0.74 | 3.19 |
2014M07 | -2.04 | -4.23 | 0.01 | -2.88 |
2014M08 | 4.24 | 0.37 | -0.57 | 4.37 |
2014M09 | -1.97 | -3.82 | -1.22 | -3.98 |
2014M10 | 2.52 | 4.23 | -1.69 | 1.25 |
2014M11 | 2.55 | -2.06 | -2.99 | 1.23 |
2014M12 | -0.06 | 2.54 | 2.07 | -12.35 |
2015M01 | -3.11 | -0.57 | -3.47 | 13.17 |
2015M02 | 6.13 | 0.53 | -1.77 | 5.05 |
2015M03 | -1.12 | 3.05 | -0.45 | -0.40 |
2015M04 | 0.59 | -2.97 | 1.85 | 0.61 |
2015M05 | 1.36 | 0.94 | -1.33 | 1.44 |
2015M06 | -1.53 | 2.81 | -0.81 | -1.82 |
2015M07 | 1.54 | -4.15 | -4.14 | -1.51 |
2015M08 | -6.04 | 0.49 | 2.69 | -4.51 |
2015M09 | -3.08 | -2.64 | 0.53 | -3.47 |
2015M10 | 7.75 | -1.98 | -0.09 | 5.67 |
2015M11 | 0.56 | 3.64 | -0.51 | 0.88 |
2015M12 | -2.17 | -2.81 | -2.57 | -13.26 |
2016M01 | -5.77 | -3.39 | 2.1 | 6.91 |
2016M02 | -0.07 | 0.78 | -0.48 | 1.65 |
2016M03 | 6.96 | 0.89 | 1.14 | 9.19 |
2016M04 | 0.92 | 0.67 | 3.25 | 3.27 |
2016M05 | 1.78 | -0.26 | -1.8 | 1.41 |
2016M06 | -0.05 | 0.65 | -1.49 | -0.45 |
2016M07 | 3.95 | 2.64 | -1.13 | 3.99 |
2016M08 | 0.5 | 1.17 | 3.34 | 0.29 |
2016M09 | 0.25 | 2.01 | -1.49 | 0.12 |
2016M10 | -2.02 | -4.36 | 4.16 | -1.85 |
2016M11 | 4.86 | 5.48 | 8.27 | 7.45 |
2016M12 | 1.82 | 0.08 | 3.61 | -4.81 |
2017M01 | 1.94 | -1.05 | -2.68 | 7.64 |
2017M02 | 3.57 | -1.99 | -1.79 | 2.11 |
2017M03 | 0.17 | 1.2 | -3.17 | 0.04 |
2017M04 | 1.09 | 0.73 | -1.91 | -0.22 |
2017M05 | 1.06 | -2.54 | -3.75 | -1.90 |
2017M06 | 0.78 | 2.15 | 1.32 | 1.84 |
2017M07 | 1.87 | -1.42 | -0.28 | 1.87 |
2017M08 | 0.16 | -1.71 | -2.26 | -1.60 |
2017M09 | 2.51 | 4.53 | 3.02 | 2.47 |
2017M10 | 2.25 | -1.94 | -0.09 | 0.3 |
This exercise asks you to apply the Fama-French 3 factor model to evaluate how risk factor sensitivity is estimated at the portfolio level. RE = di + Bim RM + Bi,SMB SMB: + BiHmL HML: + lint it MKT To simplify notation in the regression notice that: RR = Rijt RF, = is stock or portfolio ith excess return and RUKT = RMt RF,1 = is the excess return on a "stock market portfolio". SMB = Small Minus Big, i.e., the return of a portfolio of small stocks in excess of the return on a portfolio of large stocks. HML = High Minus Low, i.e., the return of a portfolio of stocks with a high book-to-market ratio in excess of the return on a portfolio of stocks with a low book-to-market ratio. Consider the monthly returns from Nov-2007 to October 2017 produced by a popular mutual fund: Fidelity Magellan (FMAGX). This fund seeks capital appreciation. The fund invests primarily in common stocks. It invests in either "growth" stocks or "value" stocks or both. In the estimation of the model choose "Huber-White-Hinkley (HC1) heteroskedasticity consistent standard errors". (Choose Coefficient Covariance Method "Huber-White" on EViews). Question: The estimated model is: RA = -1.15 + 1.32cdotRMKT - 1.24cdotSMB: - 1.08cdotHML; RE = -1.32 +0.73cdotRM + 1.93cdotSMB, + 0.73cdotHML, R = -0.25 + 1.10cdotRuKT + 0.15cdotSMB, 0.16cdotHML; R = -0.43 + 1.08cdotR 0.89cdotSMB: + 0.08cdotHML R = -1.08 + 1.06cdotry + 1.12cdotSMB+ 0.09cdotHML MKT MKT MKT In the estimation of the model choose "Huber-White-Hinkley (HC1) heteroskedasticity consistent standard errors". (Choose Coefficient Covariance Method "Huber-White" on EViews). Question: Choose the appropriate hypotheses to test whether the true coefficient on the "size (SMB) risk factor" is 0. O Ho : BsMB > 1; vs H : BSMB 1 O Ho : BSMB > 0; vs H1 : BSMB 1; vs H : BSMB 1 O Ho : BSMB > 0; vs H1 : BSMB
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started