Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

This is the data set -4.809263871962823,-92.91127193046836-4.722679597604373,-98.50665839760629-3.852326185695369,-63.212666132605776-3.6876675280917492,-51.03653767932937-3.602673970449903,-54.7845801451011-3.3576114817175053,-38.21474454707796-3.2921570379029923,-43.482161470687906-2.5983376430753724,-28.360342672935808-2.482237219472818,-18.154137820887037-2.4647565813867995,-19.162645363810505-2.4080763097008546,-16.988673971596835-2.362820520888925,-19.087104120194674-1.6908720421831624,-14.926359533508993-1.6673352111472823,-6.351234991990158-1.6071395463532339,-12.237375402473944-1.5363387134789521,-8.300153435465354-1.4182020536299023,-6.7400105313205785-1.1633551807934097,-7.9649677761379225-0.9362139523172175,-4.175204295448058-0.9299171094511385,-3.2144455328762604-0.8502652525767682,-4.412770704346382-0.7024794608625613,-8.12629971165704-0.5933085965785172,-3.4861656873009137-0.3324710674957303,0.4109124579408806-0.28311317544098014,-5.5361998509315065-0.18727168653261073,-3.7089437751685774-0.11971950457584457,-4.4545320436523580.03914421367891818,2.5838948519811960.6030126808086205,-1.01964361064234370.6116532334226774,-1.82266800948318690.6684103017637231,-5.4154316930118960.7150043884087469,-1.54349754642969650.7682044941848831,-5.2537310675224540.7929750764673531,-3.1697000968815890.794031909665895,-5.1742290576333510.7995283748983302,-1.24522497938431660.8392925064222139,-1.6032758109582240.8655124411934794,-3.9982611690590580.9309008084767942,-2.2915530470046890.9989770178771995,-6.8773439959926331.060796895047296,-8.186074310647831.0925843067806558,-2.4550166838421561.375175065769419,-3.8667763901050911.4677215732387414,-2.67088713945588461.53095309268806,2.42806245500819571.535157722909251,-1.89765413191700821.567869286517366,-7.5453622344425391.613051267727768,-1.5609472245916771.6192637218891401,-8.874195003933581.6349749505215148,-6.34785624582771751.8004483328504963,-5.5529613293278181.8315039733107636,-0.27983771421126891.8441638126115831,-7.6832246745401141.8627244480956617,-7.9708063308187461.9684999378375385,-6.0256730373764022.0845466850159644,-7.9733365686603062.3096565553806734,-3.0511049447726112.4540716248930936,-9.9188312996030562.539774507437053,-10.250460537456682.5615515500775006,-8.1519055885161012.6154747912974026,-8.403359195508242.638220840641906,-1.1485738150164082.9069082517260068,-4.3195762077899012.934657596382118,-6.917557982731093.043736447978458,-10.8819597780992673.0786594846216238,-4.6725485880976163.0882234979614145,-10.2055626538117153.161980452223857,-11.8230291180732933.2053428086247857,-3.60605074741735673.209530840919539,-6.21715362760710553.314222904833559,-4.3298804059926963.5289565452549603,-5.8427365430975273.532415412706619,-4.2220766686181953.7365489942932464,-8.2725470708948363.902966281042891,-8.8842720756985994.017381343327854,-3.2813667916709934.054430272820939,-7.5732619105561184.226495061219326,-6.3690823605985864.439438846133362,-4.3463127592901754.562287217905174,-2.02957819844241844.612391447545646,-2.74800803504058164.6633572428903385,-5.3898712915336714.686399683581027,-2.999414484399344.721895093149726,-7.4285977887865864.931833639629233,3.144324301587315.145658895201278,-1.11782291501994375.212257864531628,1.20572527126384095.49544952235007,8.6369681435440495.541896552367236,6.980432155866935.704477461060958,16.5032994535035445.758386080149778,8.9387480724492756.260053811536926,23.8129398886422236.3630970237962945,25.3214247637645266.608731058831671,28.2091920757522246.8416935426738545,39.894487695884386.890595040898134,39.282363948721227.118810571875038,49.384560781729947.17884780699503,51.564874856836197.942389404671781,85.676290351703139.658969447502237,184.53326248136773 Consider the data set Exam3DataSet provided in the Ninova. The dataset includes x (that represent the single feature) and

image text in transcribed

This is the data set

-4.809263871962823,-92.91127193046836-4.722679597604373,-98.50665839760629-3.852326185695369,-63.212666132605776-3.6876675280917492,-51.03653767932937-3.602673970449903,-54.7845801451011-3.3576114817175053,-38.21474454707796-3.2921570379029923,-43.482161470687906-2.5983376430753724,-28.360342672935808-2.482237219472818,-18.154137820887037-2.4647565813867995,-19.162645363810505-2.4080763097008546,-16.988673971596835-2.362820520888925,-19.087104120194674-1.6908720421831624,-14.926359533508993-1.6673352111472823,-6.351234991990158-1.6071395463532339,-12.237375402473944-1.5363387134789521,-8.300153435465354-1.4182020536299023,-6.7400105313205785-1.1633551807934097,-7.9649677761379225-0.9362139523172175,-4.175204295448058-0.9299171094511385,-3.2144455328762604-0.8502652525767682,-4.412770704346382-0.7024794608625613,-8.12629971165704-0.5933085965785172,-3.4861656873009137-0.3324710674957303,0.4109124579408806-0.28311317544098014,-5.5361998509315065-0.18727168653261073,-3.7089437751685774-0.11971950457584457,-4.4545320436523580.03914421367891818,2.5838948519811960.6030126808086205,-1.01964361064234370.6116532334226774,-1.82266800948318690.6684103017637231,-5.4154316930118960.7150043884087469,-1.54349754642969650.7682044941848831,-5.2537310675224540.7929750764673531,-3.1697000968815890.794031909665895,-5.1742290576333510.7995283748983302,-1.24522497938431660.8392925064222139,-1.6032758109582240.8655124411934794,-3.9982611690590580.9309008084767942,-2.2915530470046890.9989770178771995,-6.8773439959926331.060796895047296,-8.186074310647831.0925843067806558,-2.4550166838421561.375175065769419,-3.8667763901050911.4677215732387414,-2.67088713945588461.53095309268806,2.42806245500819571.535157722909251,-1.89765413191700821.567869286517366,-7.5453622344425391.613051267727768,-1.5609472245916771.6192637218891401,-8.874195003933581.6349749505215148,-6.34785624582771751.8004483328504963,-5.5529613293278181.8315039733107636,-0.27983771421126891.8441638126115831,-7.6832246745401141.8627244480956617,-7.9708063308187461.9684999378375385,-6.0256730373764022.0845466850159644,-7.9733365686603062.3096565553806734,-3.0511049447726112.4540716248930936,-9.9188312996030562.539774507437053,-10.250460537456682.5615515500775006,-8.1519055885161012.6154747912974026,-8.403359195508242.638220840641906,-1.1485738150164082.9069082517260068,-4.3195762077899012.934657596382118,-6.917557982731093.043736447978458,-10.8819597780992673.0786594846216238,-4.6725485880976163.0882234979614145,-10.2055626538117153.161980452223857,-11.8230291180732933.2053428086247857,-3.60605074741735673.209530840919539,-6.21715362760710553.314222904833559,-4.3298804059926963.5289565452549603,-5.8427365430975273.532415412706619,-4.2220766686181953.7365489942932464,-8.2725470708948363.902966281042891,-8.8842720756985994.017381343327854,-3.2813667916709934.054430272820939,-7.5732619105561184.226495061219326,-6.3690823605985864.439438846133362,-4.3463127592901754.562287217905174,-2.02957819844241844.612391447545646,-2.74800803504058164.6633572428903385,-5.3898712915336714.686399683581027,-2.999414484399344.721895093149726,-7.4285977887865864.931833639629233,3.144324301587315.145658895201278,-1.11782291501994375.212257864531628,1.20572527126384095.49544952235007,8.6369681435440495.541896552367236,6.980432155866935.704477461060958,16.5032994535035445.758386080149778,8.9387480724492756.260053811536926,23.8129398886422236.3630970237962945,25.3214247637645266.608731058831671,28.2091920757522246.8416935426738545,39.894487695884386.890595040898134,39.282363948721227.118810571875038,49.384560781729947.17884780699503,51.564874856836197.942389404671781,85.676290351703139.658969447502237,184.53326248136773

Consider the data set Exam3DataSet provided in the Ninova. The dataset includes x (that represent the single feature) and y (that represents the target variable) values of 100 different observations. You decided to use a polynomial regression model but worry about the choice of the degree of the polynomial. (a) Split your dataset into a test set and train set. (20\% test set, 80% training set) (b) Try different degrees of polynomial functions and pick the one that has the smallest LOOCV mean squared error, and report LOOCV validation errors of each polynomial functions (c) Refit your model on the training set with the selected degree of polynomial and compute the test mean squared error. (d) Try different degrees of polynomial functions and pick the one that has the smallest 5-fold cross validation mean squared error, and report 5-fold cross validation errors of each polynomial functions. (e) Refit your model on the training set with the selected degree of polynomial and compute the test mean squared error and test R2 score. (f) Are the degrees of polynomials chosen with LOOCV and 5-fold cross validation same

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Databases questions

Question

This is the data set...

Answered: 1 week ago

Question

What is an interface? What keyword is used to define one?

Answered: 1 week ago