Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Use reinforcement learning to solve this problem. 1. Consider the 3x3 wumpus world shown below. The goal of this simplified game is to be collocated

Use reinforcement learning to solve this problem.

image text in transcribed

1. Consider the 3x3 wumpus world shown below. The goal of this simplified game is to be collocated with the gold (where we get a +1000 reward) and not collocated with the wumpus (or we get a -1000 reward). All other states have a reward of. As before, the agent starts in (1,1), but has only four possible actions: Up, Down, Left, Right (there is no orientation or turning). Each of these actions has only an 80% chance of moving the agent in that direction, a 10% chance of moving 90 degrees left, and a 10% chance of moving 90 degrees right. For example, executing Up in location [1,1] would have an 80% chance of moving up to location [1,2], a 10% chance of moving left and staying in location [1,1] (i.e., a bump), and a 10% chance of moving right to location [2,1 We will use reinforcement learning to solve this problem. +1000 1000 a. Compute the utility U(s) of each non-terminal state s given the policy shown above. Note that [1,2] and [13] are terminal states, where U([1,2],--1000, and U([13],- +1000. You may assume -1. b. Compute the Q values for Q([ 1,1 ],Right), Q([2,1 ],Right), Q([3,1],Up), Q([3,2],Up), Q(3,3,Left, and Q(2,3,Left), after each of ten executions of the action sequence Right, Right, Up, Up, Left, Left (starting from1, for each sequence). You may assume =1, 1, and all Q values for non-terminal states are initially zero. 1. Consider the 3x3 wumpus world shown below. The goal of this simplified game is to be collocated with the gold (where we get a +1000 reward) and not collocated with the wumpus (or we get a -1000 reward). All other states have a reward of. As before, the agent starts in (1,1), but has only four possible actions: Up, Down, Left, Right (there is no orientation or turning). Each of these actions has only an 80% chance of moving the agent in that direction, a 10% chance of moving 90 degrees left, and a 10% chance of moving 90 degrees right. For example, executing Up in location [1,1] would have an 80% chance of moving up to location [1,2], a 10% chance of moving left and staying in location [1,1] (i.e., a bump), and a 10% chance of moving right to location [2,1 We will use reinforcement learning to solve this problem. +1000 1000 a. Compute the utility U(s) of each non-terminal state s given the policy shown above. Note that [1,2] and [13] are terminal states, where U([1,2],--1000, and U([13],- +1000. You may assume -1. b. Compute the Q values for Q([ 1,1 ],Right), Q([2,1 ],Right), Q([3,1],Up), Q([3,2],Up), Q(3,3,Left, and Q(2,3,Left), after each of ten executions of the action sequence Right, Right, Up, Up, Left, Left (starting from1, for each sequence). You may assume =1, 1, and all Q values for non-terminal states are initially zero

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Main Memory Database Systems

Authors: Frans Faerber, Alfons Kemper, Per-Åke Alfons

1st Edition

1680833243, 978-1680833249

More Books

Students also viewed these Databases questions

Question

What do Dimensions represent in OLAP Cubes?

Answered: 1 week ago