Question
Use the rule of 72 to estimate the doubling time (in years) for the interest rate, and then calculate it exactly. (Round your answers to
Use the "rule of 72" to estimate the doubling time (in years) for the interest rate, and then calculate it exactly. (Round your answers to two decimal places.)7.3%compounded weekly.
"rule of 72" ___ ?
Exact Answer ___?
The rule of 72 is a shortcut to estimate the number of years required to double your money at a given annual rate of return. The rule states that you divide the rate, expressed as a percentage, into 72:
Years required to double investment = 72 compound annual interest rate Note that a compound annual return of 8% is plugged into this equation as 8, not 0.08
We are given the interest rate as 7.3% compounded weekly = 7.3/(52) , {Considering its a 52 week year}
=> Annual interest rate = 7.3/52
Years required to double investment = 72 compound annual interest rate = 72/(7.3/52)= 72*52/7.3 = 512.876 years
For the exact answer use the compound interest formula A =P(1+r/n)^(nt) here A = 2P , n=52 , r = 7.3/100
=> 2P = P(1+7.3/5200)^(52t) 2 = (1+7.3/5200)^(52t) take log with exponential base on both the sides => ln(2)= 52t*ln(1+7.3/5200)
t =ln(2)/[52*ln(1+7.3/5200)] t = 9.50 years
hence (RULE OF 72) = 512.88 yr
(EXACT ANSWER) = 9.50 yr
The following answers listed above were incorrect.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started