Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

use these methods : public int level(T el) { return level(el, root); } protected int level(T el, BSTNode p) { if(p == null) { return

use these methods :

image text in transcribed

public int level(T el) { return level(el, root); } protected int level(T el, BSTNode p) { if(p == null) { return -1; } if(p.key.equals(el)) { return 1; } int l = level(el, p.left); int r = level(el, p.right); if(l != -1) { return 1 + l; } else if(r != -1) { return 1 + r; } else { return -1; } } 

this A recursive method that returns the level of the node containing el or -1 if el does not exist in the tree. Example: Level of node 12 in the following tree is 3.

----------------------------------------------------------------------------------------------------------------------------

public boolean isDecisionTree() { return isDecisionTree(root); } protected boolean isDecisionTree(BSTNode p) { if(p == null || (p.left == null && p.right == null)) { return true; } else if(p.left != null && p.right != null){ return isDecisionTree(p.left) && isDecisionTree(p.right); } else { return false; } } 

this

A recursive method that returns true if the tree referenced by p is a decision tree. Hint: A decision tree is one in which each node has its children as either both empty or both non-empty.

-----------------------------------------------------------------------------------------------------------------------------------

public int getPathLength(T el) { return getPathLength(el, root); } protected int getPathLength(T el, BSTNode p) { if(p == null) { return -1; } if(p.key.equals(el)) { return 0; } int l = getPathLength(el, p.left); int r = getPathLength(el, p.right); if(l != -1) { return 1 + l; } else if(r != -1) { return 1 + r; } else { return -1; } }

this A recursive method that returns the length of the path from the root of the tree referenced by p to the node containing el. Example: path length for node 12 in the following tree is 2.

------------------------------------------------------------------------------------------------------------------------------

add new case in this class to test these methods :

import java.util.Scanner;

import java.util.*;

public class TestIntegerBST {

public static void main (String[] args){

BST tree = new BST();

int option, target;

Scanner reader = new Scanner(System.in);

do {

System.out.println(" ***************************");

System.out.println("* Testing Binary Search Tree *");

System.out.println("*************************** ");

System.out.println("1. Insert an element");

System.out.println("2. Search for an element");

System.out.println("3. Delete an element");

System.out.println("4. Print in Breadth-First-Order");

System.out.println("5. Print in Pre-Order");

System.out.println("6. Print in In-Order");

System.out.println("7. Print in Post-Order");

System.out.println("8. Print sum of the elements");

System.out.println("9. Quit");

System.out.print(" Select an Option [1...9] : ");

option = reader.nextInt();

switch (option) {

case 1 : System.out.print("Enter the element to insert: ");

tree.insert(reader.nextInt());

break;

case 2 : System.out.print("Enter the element to search for: ");

target = reader.nextInt();

Integer result = tree.search(target);

if (result != null)

System.out.println("Element, "+result+ " was found in the tree");

else

System.out.println("Sorry, the element was not found");

break;

case 3 : System.out.print("Enter the element delete: ");

tree.delete(reader.nextInt());

break;

case 4 : tree.breadthFirst();

break;

case 5 : tree.preorder();

break;

case 6 : tree.inorder();

break;

case 7 : tree.postorder();

break;

case 8 : System.out.print("Sum of the elements in the tree is: "+sum(tree));

break;

} //end of switch

} while (option != 9);

} //end of main

public static int sum(BST tree) {

int sum = 0;

for (int n : tree)

sum += n;

return sum;

}

}

(i) protected int Level(T el, BSTNode T> p) A recursive method that returns the level of the node containing el or -1 if el does not exist in the tree. Example: Level of node 12 in the following tree is 3. (ii) protected boolean isDecision Tree(BSTNode A recursive method that returns true if the tree referenced by p is a decision tree. Hint: A decision tree is one in which each node has its children as either both empty or both non-empty (iv) protected int getPathLength(T el, BSTNode A recursive method that returns the length of the path from the root of the tree referenced by p to the node containing el. Example: path length for node 12 in the following tree is 2. Note: For each of the recursive methods above, you need to have a public overloaded version of the method (without parameter p) that calls the recursive version with root as the initial value of p. It is this public method you will call in the TestlntegerBST class. 1 0 1 5 2 1 2 20

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

DB2 11 The Ultimate Database For Cloud Analytics And Mobile

Authors: John Campbell, Chris Crone, Gareth Jones, Surekha Parekh, Jay Yothers

1st Edition

ISBN: 1583474013, 978-1583474013

More Books

Students also viewed these Databases questions

Question

Use good transitions

Answered: 1 week ago