Answered step by step
Verified Expert Solution
Question
1 Approved Answer
User import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.mixture import GaussianMixture from sklearn.cluster import
User
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.mixture import GaussianMixture
from sklearn.cluster import DBSCAN
# Load the dataset
filepath rC:UsersankitDownloadsAnkitprojAnkitprojClusteringAirTrafficPassengerStatistics.csv
data pdreadcsvfilepath
# Define numerical and categorical features
numericalfeatures Passenger Count', 'Adjusted Passenger Count', 'Year'
categoricalfeatures Published Airline', 'GEO Region'
# Perform onehot encoding for categorical columns
dataencoded pdgetdummiesdata columnscategoricalfeatures
# Check if there are any missing values after encoding
missingvalues dataencoded.isnullsum
printMissing values after encoding:
missingvalues
# Define preprocessing steps for numerical and categorical features
preprocessor ColumnTransformer
transformers
num StandardScaler numericalfeatures
cat OneHotEncoder categoricalfeatures
remainder'passthrough'
# Preprocess the data
try:
datapreprocessed preprocessor.fittransformdata
except ValueError as e:
printError during preprocessing:", e
printPlease check if all columns in the dataset are numeric or convertible to numeric."
# If preprocessing is successful, proceed with clustering
if 'datapreprocessed' in locals:
# Perform GMM clustering
gmm GaussianMixturencomponents
gmmclusters gmmfitpredictdatapreprocessed
# Perform DBSCAN clustering
dbscan DBSCANeps minsamples
dbscanclusters dbscan.fitpredictdatapreprocessed
# Plot the clusters
pltfigurefigsize
# GMM clusters
pltsubplot
pltscatterdatapreprocessed: datapreprocessed: cgmmclusters, cmap'viridis', alpha
plttitleGMM Clustering'
# DBSCAN clusters
pltsubplot
pltscatterdatapreprocessed: datapreprocessed: cdbscanclusters, cmap'viridis', alpha
plttitleDBSCAN Clustering'
plttightlayout
pltshow
Error during preprocessing: For a sparse output, all columns should be a numeric or convertible to a numeric.
Please check if all columns in the dataset are numeric or convertible to numeric.
my dataset columns value are index int
Activity Period int
Operating Airline object
Operating Airline IATA Code object
Published Airline object
Published Airline IATA Code object
GEO Summary object
GEO Region object
Activity Type Code object
Price Category Code object
Terminal object
Boarding Area object
Passenger Count int
Adjusted Activity Type Code object
Adjusted Passenger Count int
Year int
Month object
dtype: object
resolve the error, and provide error free code with the output.Kindly refrain my usng chatgpt as it also dontknwo the answer, nly it can be done manualy with the knowledge
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started