Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

using c++ programming language. attached are the files that are given to be used. the main, linkedList.h and unorderedLinkedList.h mainprogram.cpp -------------- #include #include unorderedLinkedList.h using

image text in transcribed

using c++ programming language. attached are the files that are given to be used. the main, linkedList.h and unorderedLinkedList.h

mainprogram.cpp

--------------

#include

#include "unorderedLinkedList.h"

using namespace std;

int main()

{

unorderedLinkedList list;

int num;

cout

cin >> num;

while (num != -999)

{

list.insertLast(num);

cin >> num;

}

cout

cout

list.print();

cout

cout

cout

cin >> num;

cout

list.deleteAll(num);

cout

list.print();

cout

cout

list.deleteSmallest();

cout

list.print();

cout

cout

return 0;

}

---------------------

unorderedLinkedList.h

#ifndef H_UnorderedLinkedList

#define H_UnorderedLinkedList

#include "linkedList.h"

using namespace std;

template

class unorderedLinkedList: public linkedListType

{

public:

bool search(const Type& searchItem) const;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the

// list, otherwise the value false is

// returned.

void insertFirst(const Type& newItem);

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list,

// last points to the last node in the

// list, and count is incremented by 1.

void insertLast(const Type& newItem);

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem

// is inserted at the end of the list,

// last points to the last node in the

// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing

// deleteItem is deleted from the list.

// first points to the first node, last

// points to the last node of the updated

// list, and count is decremented by 1.

void deleteAll(const Type& deleteItem);

//Delete all occurences of a given element

void deleteSmallest();

//TODO: Find and delete the node with the smallest info

};

template

bool unorderedLinkedList::

search(const Type& searchItem) const

{

nodeType *current; //pointer to traverse the list

bool found = false;

current = first; //set current to point to the first

/ode in the list

while (current != nullptr && !found) //search the list

if (current->info == searchItem) //searchItem is found

found = true;

else

current = current->link; //make current point to

//the next node

return found;

}//end search

template

void unorderedLinkedList::insertFirst(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

newNode->info = newItem; //store the new item in the node

newNode->link = first; //insert newNode before first

first = newNode; //make first point to the

//actual first node

count++; //increment count

if (last == nullptr) //if the list was empty, newNode is also

//the last node in the list

last = newNode;

}//end insertFirst

template

void unorderedLinkedList::insertLast(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

newNode->info = newItem; //store the new item in the node

newNode->link = nullptr; //set the link field of newNode

//to nullptr

if (first == nullptr) //if the list is empty, newNode is

//both the first and last node

{

first = newNode;

last = newNode;

count++; //increment count

}

else //the list is not empty, insert newNode after last

{

last->link = newNode; //insert newNode after last

last = newNode; //make last point to the actual

//last node in the list

count++; //increment count

}

}//end insertLast

template

void unorderedLinkedList::deleteNode(const Type& deleteItem)

{

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

bool found;

if (first == nullptr) //Case 1; the list is empty.

cout

else

{

if (first->info == deleteItem) //Case 2

{

current = first;

first = first->link;

count--;

if (first == nullptr) //the list has only one node

last = nullptr;

delete current;

}

else //search the list for the node with the given info

{

found = false;

trailCurrent = first; //set trailCurrent to point

//to the first node

current = first->link; //set current to point to

//the second node

while (current != nullptr && !found)

{

if (current->info != deleteItem)

{

trailCurrent = current;

current = current-> link;

}

else

found = true;

}//end while

if (found) //Case 3; if found, delete the node

{

trailCurrent->link = current->link;

count--;

if (last == current) /ode to be deleted

//was the last node

last = trailCurrent; //update the value

//of last

delete current; //delete the node from the list

}

else

cout

}//end else

}//end else

}//end deleteNode

template

void unorderedLinkedList::deleteAll(const Type& deleteItem)

{

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

if (first == nullptr) //Case 1; list is empty.

cout

else

{

current = first;

while (current != nullptr)

{

if (current->info == deleteItem)

{

if (current == first)

{

first = first->link;

delete current;

current = first;

if(first == nullptr)

last = nullptr;

}

else

{

trailCurrent->link = current->link;

if(current == last)

last = trailCurrent;

delete current;

current = trailCurrent-> link;

}

count--;

}

else

{

trailCurrent = current;

current = current->link;

}

} // end while

}

} //end deleteAll

template

void unorderedLinkedList::deleteSmallest()

{

// TODO: ADD code for Lab 25 here

}

#endif

------------------------

linkedList.h

#ifndef H_LinkedListType

#define H_LinkedListType

#include

#include

using namespace std;

//Definition of the node

template

struct nodeType

{

Type info;

nodeType *link;

};

template

class linkedListIterator

{

public:

linkedListIterator();

//Default constructor

//Postcondition: current = nullptr;

linkedListIterator(nodeType *ptr);

//Constructor with a parameter.

//Postcondition: current = ptr;

Type operator*();

//Function to overload the dereferencing operator *.

//Postcondition: Returns the info contained in the node.

linkedListIterator operator++();

//Overload the pre-increment operator.

//Postcondition: The iterator is advanced to the next

// node.

bool operator==(const linkedListIterator& right) const;

//Overload the equality operator.

//Postcondition: Returns true if this iterator is equal to

// the iterator specified by right,

// otherwise it returns the value false.

bool operator!=(const linkedListIterator& right) const;

//Overload the not equal to operator.

//Postcondition: Returns true if this iterator is not

// equal to the iterator specified by

// right; otherwise it returns the value

// false.

private:

nodeType *current; //pointer to point to the current

/ode in the linked list

};

template

linkedListIterator::linkedListIterator()

{

current = nullptr;

}

template

linkedListIterator::

linkedListIterator(nodeType *ptr)

{

current = ptr;

}

template

Type linkedListIterator::operator*()

{

return current->info;

}

template

linkedListIterator linkedListIterator::operator++()

{

current = current->link;

return *this;

}

template

bool linkedListIterator::operator==

(const linkedListIterator& right) const

{

return (current == right.current);

}

template

bool linkedListIterator::operator!=

(const linkedListIterator& right) const

{ return (current != right.current);

}

//***************** class linkedListType ****************

template

class linkedListType

{

public:

const linkedListType& operator=

(const linkedListType&);

//Overload the assignment operator.

void initializeList();

//Initialize the list to an empty state.

//Postcondition: first = nullptr, last = nullptr, count = 0;

bool isEmptyList() const;

//Function to determine whether the list is empty.

//Postcondition: Returns true if the list is empty,

// otherwise it returns false.

void print() const;

//Function to output the data contained in each node.

//Postcondition: none

int length() const;

//Function to return the number of nodes in the list.

//Postcondition: The value of count is returned.

void destroyList();

//Function to delete all the nodes from the list.

//Postcondition: first = nullptr, last = nullptr, count = 0;

Type front() const;

//Function to return the first element of the list.

//Precondition: The list must exist and must not be

// empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the first

// element of the list is returned.

Type back() const;

//Function to return the last element of the list.

//Precondition: The list must exist and must not be

// empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the last

// element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the

// list, otherwise the value false is

// returned.

virtual void insertFirst(const Type& newItem) = 0;

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list,

// last points to the last node in the list,

// and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem

// is inserted at the end of the list,

// last points to the last node in the list,

// and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing

// deleteItem is deleted from the list.

// first points to the first node, last

// points to the last node of the updated

// list, and count is decremented by 1.

linkedListIterator begin();

//Function to return an iterator at the begining of the

//linked list.

//Postcondition: Returns an iterator such that current is

// set to first.

linkedListIterator end();

//Function to return an iterator one element past the

//last element of the linked list.

//Postcondition: Returns an iterator such that current is

// set to nullptr.

linkedListType();

//default constructor

//Initializes the list to an empty state.

//Postcondition: first = nullptr, last = nullptr, count = 0;

linkedListType(const linkedListType& otherList);

//copy constructor

~linkedListType();

//destructor

//Deletes all the nodes from the list.

//Postcondition: The list object is destroyed.

virtual void deleteAll(const Type& deleteItem) = 0;

//Delete all occurences of a given element

virtual void deleteSmallest() = 0;

//Find and delete the node with the smallest info

protected:

int count; //variable to store the number of

//elements in the list

nodeType *first; //pointer to the first node of the list

nodeType *last; //pointer to the last node of the list

private:

void copyList(const linkedListType& otherList);

//Function to make a copy of otherList.

//Postcondition: A copy of otherList is created and

// assigned to this list.

};

template

bool linkedListType::isEmptyList() const

{

return(first == nullptr);

}

template

linkedListType::linkedListType() //default constructor

{

first = nullptr;

last = nullptr;

count = 0;

}

template

void linkedListType::destroyList()

{

nodeType *temp; //pointer to deallocate the memory

//occupied by the node

while (first != nullptr) //while there are nodes in the list

{

temp = first; //set temp to the current node

first = first->link; //advance first to the next node

delete temp; //deallocate the memory occupied by temp

}

last = nullptr; //initialize last to nullptr; first has already

//been set to nullptr by the while loop

count = 0;

}

template

void linkedListType::initializeList()

{

destroyList(); //if the list has any nodes, delete them

}

template

void linkedListType::print() const

{

nodeType *current; //pointer to traverse the list

current = first; //set current so that it points to

//the first node

while (current != nullptr) //while more data to print

{

cout info

current = current->link;

}

}//end print

template

int linkedListType::length() const

{

return count;

} //end length

template

Type linkedListType::front() const

{

assert(first != nullptr);

return first->info; //return the info of the first node

}//end front

template

Type linkedListType::back() const

{

assert(last != nullptr);

return last->info; //return the info of the last node

}//end back

template

linkedListIterator linkedListType::begin()

{

linkedListIterator temp(first);

return temp;

}

template

linkedListIterator linkedListType::end()

{

linkedListIterator temp(nullptr);

return temp;

}

template

void linkedListType::copyList

(const linkedListType& otherList)

{

nodeType *newNode; //pointer to create a node

nodeType *current; //pointer to traverse the list

if (first != nullptr) //if the list is nonempty, make it empty

destroyList();

if (otherList.first == nullptr) //otherList is empty

{

first = nullptr;

last = nullptr;

count = 0;

}

else

{

current = otherList.first; //current points to the

//list to be copied

count = otherList.count;

//copy the first node

first = new nodeType; //create the node

first->info = current->info; //copy the info

first->link = nullptr; //set the link field of

//the node to nullptr

last = first; //make last point to the

//first node

current = current->link; //make current point to

//the next node

//copy the remaining list

while (current != nullptr)

{

newNode = new nodeType; //create a node

newNode->info = current->info; //copy the info

newNode->link = nullptr; //set the link of

/ewNode to nullptr

last->link = newNode; //attach newNode after last

last = newNode; //make last point to

//the actual last node

current = current->link; //make current point

//to the next node

}//end while

}//end else

}//end copyList

template

linkedListType::~linkedListType() //destructor

{

destroyList();

}//end destructor

template

linkedListType::linkedListType

(const linkedListType& otherList)

{

first = nullptr;

copyList(otherList);

}//end copy constructor

//overload the assignment operator

template

const linkedListType& linkedListType::operator=

(const linkedListType& otherList)

{

if (this != &otherList) //avoid self-copy

{

copyList(otherList);

}//end else

return *this;

}

#endif

Objectives: Implement basic functionalities using Linked Lists Question 1: Extend the class unorderedLinkedList by adding the operation Find and delete the node with the smallest info in the list. (Delete only the first occurrence and traverse the list only once.) And test this function in your main program. You need 4 pointers: nodeType Type> *current; nodeType *trailCurrent; nodeType *small; nodeType *trailSmall; Consider differences for deleting a node form a link list when that node is at the beginning of the list, end of a list, somewhere between the beginning and end. You can download linkedList.h, unorderedLinkedList.h and mainProgram from the blackboard. Objectives: Implement basic functionalities using Linked Lists Question 1: Extend the class unorderedLinkedList by adding the operation Find and delete the node with the smallest info in the list. (Delete only the first occurrence and traverse the list only once.) And test this function in your main program. You need 4 pointers: nodeType Type> *current; nodeType *trailCurrent; nodeType *small; nodeType *trailSmall; Consider differences for deleting a node form a link list when that node is at the beginning of the list, end of a list, somewhere between the beginning and end. You can download linkedList.h, unorderedLinkedList.h and mainProgram from the blackboard

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database And Expert Systems Applications 19th International Conference Dexa 2008 Turin Italy September 2008 Proceedings Lncs 5181

Authors: Sourav S. Bhowmick ,Josef Kung ,Roland Wagner

2008th Edition

3540856536, 978-3540856535

More Books

Students also viewed these Databases questions

Question

How can you defend against SQL injection attacks?

Answered: 1 week ago

Question

8. Providing support during instruction.

Answered: 1 week ago