Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

using python, I want solution of task2 using the same ideas of task1 provided. thanks You are providee with two text files. Thye first file,

using python, I want solution of task2 using the same ideas of task1 provided. thanksimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed

You are providee with two text files. Thye first file, named 'Car_sales.txt', contains technical and commercial information about some cars. The following figuer is a screenshot of the file. Columns are separated by a tab ('\ t'). The first line represents the header while the following lines represent the data. The second file, named 'car_list.txt", contains the list of car names. Each name is written in a seprate file. Manufacturer Acura Model Integra TL CL RL AG AB Audi Audi BMW BMW BMW Sales_in_thousands _year_resale_value Vehicle_type Price_in_thousands Engine_size Horsepower Wheelbase Width Length urb_weigtsel_capac Fuel efficiency latest_Launch Power_pert_factor 16.919 16.36 Passenger 21.5 1.8 140 2012 1724 39.384 2/2/2012 19.875 Passenger 28.4 3.2 58.20014952 225 1929 3.517 172 14. 114 6/3/2011 18.225 Passenger 225 91.37077766 1.47 3.58 29.725 1/4/2012 Passenger 3.5 714 3.85 18 20.397 22 1/10/2011 91.38977933 22.255 Passenger 23.99 150 1026 2290 164 27 18.70 10/8/2011 21.555 62.7775392 Passenger 2.8 200 100% 15 2.38 8/9/2011 | Passenger 42 310 113 14.56510502 23.7 19.747 21 2/27/2012 Passenger 2.5 107.3 134.6568582 17 3.179 25 9.231 28.675 6/28/2011 71.19120671 Passenger 193 1023 1N 3.197 16,6 24 1/29/2012 17527 81.87706856 26.125 Passenger 38.9 28 3.472 18.5 91.561 4/4/2011 83.9987218 12.475 Passenger 21.975 3.1 109 72.7 1946 175 11/2/2011 71.18145132 13.74 Passenger 38 240 72 175 27.851 20:19 23 Passenger 9/3/2011 31. 28 205 1118 95.63670253 27 2058 3.78 185 24 12.16 3/23/2012 85.82540825 Passenger 38 205 75 3.591 175 28 63.729 7/23/2011 84.25452581 22.525 Passenger 39.895 46 225 115) 25 2072 3.978 185 15. 27.1 2/23/2012 Passenger 113.8545976 44.475 4.6 1122 201 185 25.725 4/29/2011 115.6213578 Passenger 39.665 100 755 19 11.15 18.225 Passenger 11/27/2011 31.01 3 200 1024 113.7658739 19 1.77 22 9/28/2011 14.78 83.48309358 Car 46.225 5.7 1125 77 5.572 30 15 4/17/2012 109.5091165 Century Regal Park Avenue Sabre Deville Buick Cadillac Cadillac Cadillac Cadillac Eldorado Catera Escalade Objectives: 1. Calculate the total and the average sales in thousands) for each auto manufacturer (Task 1). Show the results as follows: Car name Total sales Average sales 0 Acura 64.891 21.630333 1 Audi 40.557 13.519000 13.379000 N BMW 26.758 3 Buick 242.019 60.504750 2. Find the best-selling car model for each car manufacturer (Task 2). Organize the results in a csv file. It should look like the following: Car name Best selling 0 Acura TL 1 Audi A4 2 BMW 528i 3 Buick Century De Ville 4 Cadillac 5 Chevrolet 6 Chrysler 7 Dodge 8 Ford Cavalier Sebring Conv. Ram Pickup F-Series Accord Elantra 9 Honda 10 Hyundai 11 Infiniti 130 12 Jeep 13 Lexus Grand Cherokee ES300 Town car 14 Lincoln Define the 1st functiuon i def getDataAboutCar(in_data_file, in_car, in_key): 2 3 4 5 6 7 8 9 10 11 12 This function find information about a specific car input: @ in_data_file: name of the file containing data @ in_car: name of the car @ in_key: target information output: @ ou_tots: total sales @ ou_avgs: average sales 10/5/2020 DCS, SQU 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 # --> # open data file file = open(in_data_file) # read the header (1st line) line = file.readline().strip().split('\t') # get the index (column number) of the key infoirmation indx_key = line.index(in_key) # read data from next lines total_sales = # used to compute the total sales i = 0 # used to compute the number of car's model for line in file: line = line.strip().split('\t') car_name = line[@] if car_name. lower() -- car.lower(): total_sales = total_sales + float(line[indx_key]) i = 1+1 30 31 32 33 34 35 36 37 38 average_sales = total_sales/i ou_tots = total_sales ou_avgs = average_sales # close file file.close() return ou_tots, ou_avgs Test for one car, i.e., Acura 1 car = input('Which car manufacturer would you like to look up for sales information?') total sales. average sales = getDataAboutCar(data file.car. 'Sales in thousands') 2 3 print('Total sales = %2.2f and Average sale = %2.2f'%(total_sales, average_sales)) Which car manufacturer would you like to look up for sales information?acura Total sales = 64.89 and Average sale = 21.63 Define the 2nd function 3 i def compute TotalSales ByCarManufacturer(in_data_file, in_car_list, in_key): 2 The function compute the total sales for all the car manufacturers. Input: @ in_data_file: data file @ in_car_list: car list @ in_key: target information Output: 9 @ ou_ds: dictinary of sale information 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 car_file = open(in_car_list, 'r') dict_sales = {} car_names = [] total_sales = [] average_sales = [] for car in car_file: car_name = car.strip().split()[0] car_names.append(car_name) # call the first function tots, avgs = getDataAboutCar(in_data_file,car_name, in_key) total_sales.append(tots) average sales, annend (ayes) 20 21 22 20 21 22 23 tots, avgs = getDataAboutCar(in_data_file, car_name, in_key) total_sales.append(tots) average_sales.append(avgs) dict_sales['Car name'] = car_names dict_sales['Total sales'] = total_sales dict_sales['Average sales'] = average_sales 24 25 26 27 28 ou_ds = dict_sales car_file.close() return dict_sales 29 Test for all cars 1 2 dict_sales = computeTotalSalesByCarManufacturer(data_file, car_list, 'Sales_in_thousands' print(dict_sales) Record the result in a CSV format file 1 2 3 import pandas as pd df = pd.DataFrame (dict_sales) df.head (5) # save it as csv file df.to_csv('salesbyCars.csv') 4 5 Task 2 1 2 def getBestsellingCar(i_data_file, i_car): T! 3 4 1 2 input('Enter the car manufacturer name for which you want to find the best selling: car = #.. def bestsellingByCarManufacturer(i_data_file, i_car_list): 1 2 3 T 4 1 2 best selling_all_cars = print(best_selling_all_cars) You are providee with two text files. Thye first file, named 'Car_sales.txt', contains technical and commercial information about some cars. The following figuer is a screenshot of the file. Columns are separated by a tab ('\ t'). The first line represents the header while the following lines represent the data. The second file, named 'car_list.txt", contains the list of car names. Each name is written in a seprate file. Manufacturer Acura Model Integra TL CL RL AG AB Audi Audi BMW BMW BMW Sales_in_thousands _year_resale_value Vehicle_type Price_in_thousands Engine_size Horsepower Wheelbase Width Length urb_weigtsel_capac Fuel efficiency latest_Launch Power_pert_factor 16.919 16.36 Passenger 21.5 1.8 140 2012 1724 39.384 2/2/2012 19.875 Passenger 28.4 3.2 58.20014952 225 1929 3.517 172 14. 114 6/3/2011 18.225 Passenger 225 91.37077766 1.47 3.58 29.725 1/4/2012 Passenger 3.5 714 3.85 18 20.397 22 1/10/2011 91.38977933 22.255 Passenger 23.99 150 1026 2290 164 27 18.70 10/8/2011 21.555 62.7775392 Passenger 2.8 200 100% 15 2.38 8/9/2011 | Passenger 42 310 113 14.56510502 23.7 19.747 21 2/27/2012 Passenger 2.5 107.3 134.6568582 17 3.179 25 9.231 28.675 6/28/2011 71.19120671 Passenger 193 1023 1N 3.197 16,6 24 1/29/2012 17527 81.87706856 26.125 Passenger 38.9 28 3.472 18.5 91.561 4/4/2011 83.9987218 12.475 Passenger 21.975 3.1 109 72.7 1946 175 11/2/2011 71.18145132 13.74 Passenger 38 240 72 175 27.851 20:19 23 Passenger 9/3/2011 31. 28 205 1118 95.63670253 27 2058 3.78 185 24 12.16 3/23/2012 85.82540825 Passenger 38 205 75 3.591 175 28 63.729 7/23/2011 84.25452581 22.525 Passenger 39.895 46 225 115) 25 2072 3.978 185 15. 27.1 2/23/2012 Passenger 113.8545976 44.475 4.6 1122 201 185 25.725 4/29/2011 115.6213578 Passenger 39.665 100 755 19 11.15 18.225 Passenger 11/27/2011 31.01 3 200 1024 113.7658739 19 1.77 22 9/28/2011 14.78 83.48309358 Car 46.225 5.7 1125 77 5.572 30 15 4/17/2012 109.5091165 Century Regal Park Avenue Sabre Deville Buick Cadillac Cadillac Cadillac Cadillac Eldorado Catera Escalade Objectives: 1. Calculate the total and the average sales in thousands) for each auto manufacturer (Task 1). Show the results as follows: Car name Total sales Average sales 0 Acura 64.891 21.630333 1 Audi 40.557 13.519000 13.379000 N BMW 26.758 3 Buick 242.019 60.504750 2. Find the best-selling car model for each car manufacturer (Task 2). Organize the results in a csv file. It should look like the following: Car name Best selling 0 Acura TL 1 Audi A4 2 BMW 528i 3 Buick Century De Ville 4 Cadillac 5 Chevrolet 6 Chrysler 7 Dodge 8 Ford Cavalier Sebring Conv. Ram Pickup F-Series Accord Elantra 9 Honda 10 Hyundai 11 Infiniti 130 12 Jeep 13 Lexus Grand Cherokee ES300 Town car 14 Lincoln Define the 1st functiuon i def getDataAboutCar(in_data_file, in_car, in_key): 2 3 4 5 6 7 8 9 10 11 12 This function find information about a specific car input: @ in_data_file: name of the file containing data @ in_car: name of the car @ in_key: target information output: @ ou_tots: total sales @ ou_avgs: average sales 10/5/2020 DCS, SQU 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 # --> # open data file file = open(in_data_file) # read the header (1st line) line = file.readline().strip().split('\t') # get the index (column number) of the key infoirmation indx_key = line.index(in_key) # read data from next lines total_sales = # used to compute the total sales i = 0 # used to compute the number of car's model for line in file: line = line.strip().split('\t') car_name = line[@] if car_name. lower() -- car.lower(): total_sales = total_sales + float(line[indx_key]) i = 1+1 30 31 32 33 34 35 36 37 38 average_sales = total_sales/i ou_tots = total_sales ou_avgs = average_sales # close file file.close() return ou_tots, ou_avgs Test for one car, i.e., Acura 1 car = input('Which car manufacturer would you like to look up for sales information?') total sales. average sales = getDataAboutCar(data file.car. 'Sales in thousands') 2 3 print('Total sales = %2.2f and Average sale = %2.2f'%(total_sales, average_sales)) Which car manufacturer would you like to look up for sales information?acura Total sales = 64.89 and Average sale = 21.63 Define the 2nd function 3 i def compute TotalSales ByCarManufacturer(in_data_file, in_car_list, in_key): 2 The function compute the total sales for all the car manufacturers. Input: @ in_data_file: data file @ in_car_list: car list @ in_key: target information Output: 9 @ ou_ds: dictinary of sale information 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 car_file = open(in_car_list, 'r') dict_sales = {} car_names = [] total_sales = [] average_sales = [] for car in car_file: car_name = car.strip().split()[0] car_names.append(car_name) # call the first function tots, avgs = getDataAboutCar(in_data_file,car_name, in_key) total_sales.append(tots) average sales, annend (ayes) 20 21 22 20 21 22 23 tots, avgs = getDataAboutCar(in_data_file, car_name, in_key) total_sales.append(tots) average_sales.append(avgs) dict_sales['Car name'] = car_names dict_sales['Total sales'] = total_sales dict_sales['Average sales'] = average_sales 24 25 26 27 28 ou_ds = dict_sales car_file.close() return dict_sales 29 Test for all cars 1 2 dict_sales = computeTotalSalesByCarManufacturer(data_file, car_list, 'Sales_in_thousands' print(dict_sales) Record the result in a CSV format file 1 2 3 import pandas as pd df = pd.DataFrame (dict_sales) df.head (5) # save it as csv file df.to_csv('salesbyCars.csv') 4 5 Task 2 1 2 def getBestsellingCar(i_data_file, i_car): T! 3 4 1 2 input('Enter the car manufacturer name for which you want to find the best selling: car = #.. def bestsellingByCarManufacturer(i_data_file, i_car_list): 1 2 3 T 4 1 2 best selling_all_cars = print(best_selling_all_cars)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Big Data Concepts, Theories, And Applications

Authors: Shui Yu, Song Guo

1st Edition

3319277634, 9783319277639

More Books

Students also viewed these Databases questions

Question

LO3 Define the difference between job satisfaction and engagement.

Answered: 1 week ago