Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Using templates! Change the existing code in intbst.h and intbst.cpp to accept any type of variable in the binary search tree (not just int). intbst.h

Using templates!

Change the existing code in intbst.h and intbst.cpp to accept any type of variable in the binary search tree (not just int).

intbst.h :

#ifndef INTBST_H
#define INTBST_H
#include
using namespace std;
class IntBST {
public:
// ctor, dtor, insert and one print method already done in intbst.cpp:
IntBST(); // constructor
~IntBST(); // destructor
bool insert(int value); // insert value; return false if duplicate
void printPreOrder() const; // prints tree data pre-order to cout
void printInOrder() const; // print tree data in-order to cout
void printPostOrder() const; // print tree data post-order to cout
int sum() const; // sum of all values
int count() const; // count of values
bool contains(int value) const; // true if value is in tree
int getPredecessor(int value) const; // returns the predecessor value of the given value or 0 if there is none
int getSuccessor(int value) const; // returns the successor value of the given value or 0 if there is none
bool remove(int value); // deletes the Node containing the given value from the tree
private:
struct Node {
int info;
Node *left, *right, * parent;
// useful constructor:
Node(int v=0) : info(v), left(0), right(0), parent(0) { }
};
// just one instance variable (pointer to root node):
Node *root;
// recursive utility functions for use by public methods above
Node* getNodeFor(int value, Node* n) const; //returns the node for a given value or NULL if none exists
void clear(Node *n); // for destructor
bool insert(int value, Node *n); // note overloading names for simplicity
void printPreOrder(Node *n) const;
void printInOrder(Node *n) const;
void printPostOrder(Node *n) const;
int sum(Node *n) const;
int count(Node *n) const;
// these are used by getPredecessor and getSuccessor, and one of them used by remove
Node* getSuccessorNode(int value) const; // returns the Node containing the successor of the given value
Node* getPredecessorNode(int value) const; // returns the Node containing the predecessor of the given value
};

#endif

intbst.cpp

intbst.cpp :

#include "intbst.h"
#include
using std::cout;
// constructor sets up empty tree
IntBST::IntBST() : root(0) { }
// destructor deletes all nodes
IntBST::~IntBST() {
clear(root);
}
// recursive helper for destructor
void IntBST::clear(Node *n) {
if (n) {
clear(n->left);
clear(n->right);
delete n;
}
}
// insert value in tree; return false if duplicate
bool IntBST::insert(int value) {
// handle special case of empty tree first
if (!root) {
root = new Node(value);
return true;
}
// otherwise use recursive helper
return insert(value, root);
}
// recursive helper for insert (assumes n is never 0)
bool IntBST::insert(int value, Node *n) {
if (value == n->info)
return false;
if (value < n->info) {
if (n->left)
return insert(value, n->left);
else {
n->left = new Node(value);
n->left->parent = n;
return true;
}
}
else {
if (n->right)
return insert(value, n->right);
else {
n->right = new Node(value);
n->right->parent = n;
return true;
}
}
}
// print tree data pre-order
void IntBST::printPreOrder() const {
printPreOrder(root);
}
// recursive helper for printPreOrder()
void IntBST::printPreOrder(Node *n) const {
if (n) {
cout << n->info << " ";
printPreOrder(n->left);
printPreOrder(n->right);
}
}
// print tree data in-order, with helper
void IntBST::printInOrder() const {
printInOrder(root);
}
void IntBST::printInOrder(Node *n) const {
if (n) {
printInOrder(n->left);
cout<info<<" ";
printInOrder(n->right);
}
}
// prints tree data post-order, with helper
void IntBST::printPostOrder() const {
printPostOrder(root);
}
void IntBST::printPostOrder(Node *n) const {
if (n) {
printPostOrder(n->left);
printPostOrder(n->right);
cout << n->info << " ";
}
}
// return sum of values in tree
int IntBST::sum() const {
return sum(root);
}
// recursive helper for sum
int IntBST::sum(Node *n) const {
if (n==NULL)
return 0;
return (sum(n->left)+sum(n->right)+n->info);
}
// return count of values
int IntBST::count() const {
return count(root);
}
// recursive helper for count
int IntBST::count(Node *n) const {
if(n==NULL)
return 0;
else{
int c=1;
c+=count(n->left);
c+=count(n->right);
return c;
}
}
// Parameters:
// int value: the value to be found
IntBST::Node* IntBST::getNodeFor(int value, Node* n) const{
/*while(n){
if (n -> info == value)
return n;
if (n -> info > value)
n = n -> left;
if (n -> info < value)
n = n -> right;
//cout<info<
}
return NULL;*/
if(n==NULL) return NULL;
else if(n->info == value) return n;
else if(n->info>value) return getNodeFor(value, n->left);
else if(n->inforight);
}
// returns true if value is in the tree; false if not
bool IntBST::contains(int value) const {
return(getNodeFor(value, root)!=NULL);
}
// returns the Node containing the predecessor of the given value
IntBST::Node* IntBST::getPredecessorNode(int value) const{
Node* n = getNodeFor(value, root);
if (n==NULL)
return n;
Node* temp = NULL;
if(n->left){
n=n->left;
while(n->right){
n = n->right;
}
temp = n;
}
else {
while(n->parent){
// Node* tempParent = n->parent;
if(n->parent->info < value){
temp=n->parent;
break;
}
else{
n = n->parent;
}
}
}
return temp;
}
// returns the predecessor value of the given value or 0 if there is none
int IntBST::getPredecessor(int value) const{
Node* val = getPredecessorNode(value);
if (val == NULL){
return 0;
}
else
return val->info;
}
// returns the Node containing the successor of the given value
IntBST::Node* IntBST::getSuccessorNode(int value) const{
Node* n = getNodeFor(value, root);
if (n==NULL){
Node* n=NULL;
return n;
}
Node* temp = NULL;
if(n->right){
n=n->right;
while(n->left){
n = n->left;
}
temp = n;
}
else {
while(n->parent){
// Node* tempParent = n->parent;
if(n->parent->info > value){
temp=n->parent;
break;
}
else{
n = n->parent;
}
}
}
return temp;
}
// returns the successor value of the given value or 0 if there is none
int IntBST::getSuccessor(int value) const{
Node* tmp = getSuccessorNode(value);
if (tmp == NULL)
return 0;
else
return (tmp->info);
}
// deletes the Node containing the given value from the tree
// returns true if the node exist and was deleted or false if the node does not exist
bool IntBST::remove(int value){
if (!getNodeFor(value,root))
return false;
Node* n = getNodeFor(value, root);
if (n->right==NULL && n->left==NULL){ //leaf
if(n == root){
root = NULL;
delete n;
}
else if (n==(n->parent->left))
n->parent->left = NULL;
else
n->parent->right = NULL;
delete n;
}
else if(n->left == NULL || n->right == NULL){ //only one child
if(n==root){ //and is root
if(n->right) root = n->right;
else root = n->left;
}
else{ //and is not root
Node* next;
if(n->right) next= n->right;
else next = n->left;
if(n->parent->right == n){ //if n is right of parent
n->parent->right = next;
n->parent->right->parent = n->parent;
}
else{ //else n is left of parent
n->parent->left = next;
n->parent->left->parent = n->parent;
}
}
delete n;
}
else{ //two children
Node* swap;
int temp;
swap = getPredecessorNode(n->info);
temp = n->info;
n->info = swap->info;
swap->info = temp;
remove(swap->info);
}
return true;
}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Theory Icdt 97 6th International Conference Delphi Greece January 8 10 1997 Proceedings Lncs 1186

Authors: Foto N. Afrati ,Phokion G. Kolaitis

1st Edition

3540622225, 978-3540622222

More Books

Students also viewed these Databases questions

Question

d. Would you implement the new control algorithm?

Answered: 1 week ago

Question

What is gravity?

Answered: 1 week ago

Question

What is the Big Bang Theory?

Answered: 1 week ago