Question
We are contracting you to help design a space capsule for NASA that will orbit the earth and eventually re-enter the atmosphere and splash down
0 V (y)= (0,y) (-5,3) [(-4(x-3)/3)-(2/3(x^2-9)) = 56.8y Volume = 56.8y Mass of the capsule = 56.8*(32/3)p = 605.9 p 3. Our initial measurements indicate that when the density of the capsule is p9/13Mg/m^3, the water level will be at exactly y=0. Please confirm this. From Archimedes principle 1440 *1* g = (1440 + 605.9)P * g On solving we get p = 9/13 Mg/m^3 4. We will also need to find the water level as a function of the density p. Find a function when 0
9/13 1440+56.8y = (1440 + 605.9)p * g Y = [1440(p-1)+ 605.9p]/56.8 5. The center of buoyancy" is the center of mass displaced by an object. A floating object is most stable when its center of mass exactly below its center of buoyancy. We are worried that our capsule design will be unstable. Please choose some 0p <1 1
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started