Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

You have a business heat - treating specialty industrial castings. The number of castings you receive for treatment each day is a Poisson random variable

You have a business heat-treating specialty industrial castings. The number of castings you receive for treatment each day is a Poisson random variable with a mean value of 4.1. You process the castings in a super-high-temperature oven that can hold up to 5 castings. This oven uses a heating element that sometimes fails; the probability of failure is as follows:
Day of Use
Failure Probability
1
1%
2
7%
3
9%
4
15%
5
25%
After the fifth day of use, the safety regulations for the oven require that the heating element be replaced even if it is still functioning. On days that the heating element fails, you must wait until tomorrow to reprocess all the castings for that day. Thus, on days that the heating element is working, you have a total processing capacity of up to 5 castings, but on days that it fails, your capacity is effectively 0 castings. You process the castings on a first-come, first-served basis -- if you cannot finish all the castings waiting to be processed on a given day, you save them in a queue and try to process as many as possible the next day. You are considering 5 possible policies, parameterized by a number d =1,2,3,4, or 5. At the end of the day, if the heating element has been in use for d days and has not failed, you replace it. On days when the element fails, you also replace it at the end of the day.
The economics of the operation are as follows:
The heating element costs $800 to replace if it did not fail
When the element fails, it costs $1500 to replace
You receive $200 in revenue each time you finish processing a casting
You estimate that each day that each casting spends waiting to be processed costs you $40 in loss of goodwill, storage costs, etc.
You may assume all other costs and revenues to be negligible.
Determine by simulation which value of d gives you the highest expected profit over a 60-day period. You may ignore any costs and revenues from castings left in queue at the end of the period. Use a sample size of at least 500, and assume that you start with a new heating element on the first day.
You are also interested in whether the queue of unprocessed castings left at the end of the day exceeds 10 at any time during the 60-day period. With the optimal value of d, what is the probability of this event? Use @Risk Excel Software not Python code

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Operations management

Authors: Jay Heizer, Barry Render

10th edition

978-0136119418, 136119417, 978-0132163927

More Books

Students also viewed these General Management questions