Consider the following two models where $E(boldsymbol{varepsilon})=mathbf{0}$ and $operatorname{Var}(boldsymbol{varepsilon})=sigma^{2} mathbf{I}$ : Model A: $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{1}+boldsymbol{varepsilon}$ Model B:
Question:
Consider the following two models where $E(\boldsymbol{\varepsilon})=\mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$ :
Model A: $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}$
Model B: $\quad \mathbf{y}=\mathbf{X}_{1}^{\prime} \beta_{1}+\mathbf{X}_{2} \beta_{2}+\varepsilon$
Show that $\quad R_{\mathrm{A}}^{2} \leq R_{\mathrm{B}}^{2}$.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Linear Regression Analysis
ISBN: 9781119578727
6th Edition
Authors: Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining
Question Posted: