Consider the following two models where $E(boldsymbol{varepsilon})=mathbf{0}$ and $operatorname{Var}(boldsymbol{varepsilon})=sigma^{2} mathbf{I}$ : Model A: $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{1}+boldsymbol{varepsilon}$ Model B:

Question:

Consider the following two models where $E(\boldsymbol{\varepsilon})=\mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$ :

Model A: $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}$

Model B: $\quad \mathbf{y}=\mathbf{X}_{1}^{\prime} \beta_{1}+\mathbf{X}_{2} \beta_{2}+\varepsilon$

Show that $\quad R_{\mathrm{A}}^{2} \leq R_{\mathrm{B}}^{2}$.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Introduction To Linear Regression Analysis

ISBN: 9781119578727

6th Edition

Authors: Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Question Posted: