Suppose we fit the model $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{2}+boldsymbol{varepsilon}$ when the true model is actually given by $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{2}+mathbf{X}_{2}
Question:
Suppose we fit the model $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$ when the true model is actually given by $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{2}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$. For both models, assume $E(\boldsymbol{\varepsilon})=\mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$. Find the expected value and variance of the ordinary least-squares estimate, $\hat{\boldsymbol{\beta}}_{1}$. Under what conditions is this estimate unbiased?
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Linear Regression Analysis
ISBN: 9781119578727
6th Edition
Authors: Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining
Question Posted: