Consider the calculation of roots of an equation z N = where N 1 is

Question:

Consider the calculation of roots of an equation zN = α where N ≥ 1 is an integer and α = |α|e a nonzero complex numb

(a) First verify that there are exactly N roots for this equation and that they are given by

zk = rejθk where r = |α|1/N and θk = (ϕ + 2πk)/N for k = 0, 1, ... , N – 1.


(b) Use the above result to find the roots of the following equations


(i) z2 = 1; (ii) z2 = -1; (iii) z3 = 1; (iv) z3 = -1.


and plot them in a polar plane (i..e., indicating their magnitude and phase). Explain how the roots are distributed in the polar plane.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Signals and Systems using MATLAB

ISBN: 978-0128142042

3rd edition

Authors: Luis Chaparro, Aydin Akan

Question Posted: