Question: Show that for light with a Lorentzian spectral profile, the parameter (mathcal{M}) is given by [ mathcal{M}=left[frac{tau_{c}}{T}+frac{1}{2}left(frac{tau_{c}}{T} ight)^{2}left(e^{-2 T / tau_{c}}-1 ight) ight]^{-1} ]
Show that for light with a Lorentzian spectral profile, the parameter \(\mathcal{M}\) is given by
\[ \mathcal{M}=\left[\frac{\tau_{c}}{T}+\frac{1}{2}\left(\frac{\tau_{c}}{T}\right)^{2}\left(e^{-2 T / \tau_{c}}-1\right)\right]^{-1} \]
Step by Step Solution
3.34 Rating (157 Votes )
There are 3 Steps involved in it
Heres the derivation of the given expression for the parameter M for light with a Lorentzian spectra... View full answer
Get step-by-step solutions from verified subject matter experts
