Example 9.9: BoseEinstein integrals and Riemann zeta functions (x) Show that 0 x2ex2 1
Question:
Example 9.9: Bose–Einstein integrals and Riemann zeta functions ζ(x)
Show that¶¶
∞
0 x2e−x2 1 − e−x2 dx =
1 4
√πζ
3 2
, ζ
3 2
= 2.612. (9.43)
More generally
∞
0 xn ex − 1 dx = n! ζ(n + 1). (9.44)
Thus Bose–Einstein integrals can be related to Riemann zeta functions.
[Hint: Use the change of variables in
∞
0 x2dxe−x2
[1 + exp(−x2) + · · ·] =
∞
0 x2dx exp(−x2)[1 + 2−3/2 + · · · ]].
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: