If (X1, Y1),..., (Xn, Yn) is a sample from a bivariate normal distribution, the probability density of
Question:
If (X1, Y1),..., (Xn, Yn) is a sample from a bivariate normal distribution, the probability density of the sample correlation coefficient R is15 pρ(r) = 2n−3
π(n − 3)! (1 − ρ2
)
1 2 (n−1)(1 − r2
)
1 2 (n−4) (5.85)
×∞
k=0
Γ2
#
1 2 (n + k − 1)$ (2ρr)
k k!
or alternatively pρ(r) = n − 2
π (1 − ρ2
)
1 2 (n−1)(1 − r2
)
1 2 (n−4) (5.86)
×
1 0
t n−2
(1 − ρrt)n−1 1
√1 − t2 dt.
Another form is obtained by making the transformation t = (1 − v)/(1 − ρrv) in the integral on the right-hand side of (5.86). The integral then becomes 1
(1 − ρr)
1 2 (2n−3) 1 0
(1 − v)
n−2
√2v
#
1 − 1 2 v(1 + ρr)
$−1/2 dv. (5.87)
Expanding the last factor in powers of v, the density becomes n − 2
√2π
Γ(n − 1)
Γ(n − 1 2 )
(1 − ρ2
)
1 2 (n−1)(1 − r2
)
1 2 (n−4)(1 − ρr)
−n+ 3 2 (5.88)
×F 1
2 ; 1 2 ; n − 1 2 ;
1 + ρr 2
, where F
(a,
b, c, x) = ∞
j=0
Γ(a + j)
Γ(a)
Γ(b + j)
Γ(b)
Γ(c)
Γ(c + j)
xj j! (5.89)
is a hypergeometric function.
[To obtain the first expression make a transformation from (S2 1 , S2 2 , S12) with density (5.84) to (S2 1 , S2 2 , R) and expand the factor exp{ρs12/(1 − ρ2)στ} = exp{ρrs1s2/(1 − ρ2)στ} into a power series. The resulting series can be integrated term by term with respect to s2 1 and s2 2. The equivalence with the second expression is seen by expanding the factor (1 − ρrt)
−(n−1) under the integral in (5.86) and integrating term by term.]
Step by Step Answer:
Testing Statistical Hypotheses
ISBN: 9781441931788
3rd Edition
Authors: Erich L. Lehmann, Joseph P. Romano