Consider the function [H(s)=frac{n(s)}{d(s)}] where $n(s)=s^{4}+6 s^{3}+5 s^{2}+4 s+3$ [d(s)=s^{5}+7 s^{4}+6 s^{3}+5 s^{2}+4 s+7] (a) Find $n$

Question:

Consider the function

\[H(s)=\frac{n(s)}{d(s)}\]

where $n(s)=s^{4}+6 s^{3}+5 s^{2}+4 s+3$

\[d(s)=s^{5}+7 s^{4}+6 s^{3}+5 s^{2}+4 s+7\]

(a) Find $n$ (-10), $n$ (-5), $n$ (-3), and $n$ (-1)

(b) Find $d(-10), d(-5), d(-3)$, and $d(-1)$

(c) Find $H(-10), H(-5), H(-3)$, and $H(-1)$

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: