Consider the polynomials [begin{aligned}& p_{1}(s)=s^{3}+5 s^{2}+3 s+10 & p_{2}(s)=s^{4}+7 s^{3}+5 s^{2}+8 s+15 & p_{3}(s)=s^{5}+15 s^{4}+10 s^{3}+6 s^{2}+3

Question:

Consider the polynomials

\[\begin{aligned}& p_{1}(s)=s^{3}+5 s^{2}+3 s+10 \\& p_{2}(s)=s^{4}+7 s^{3}+5 s^{2}+8 s+15 \\& p_{3}(s)=s^{5}+15 s^{4}+10 s^{3}+6 s^{2}+3 s+9\end{aligned}\]

Determine

(a) $p_{1}(2), p_{2}(2)$, and $p_{3}(3)$

(b) $p_{1}(s) p_{2}(\mathrm{~s}) p_{3}(\mathrm{~s})$

(c) $p_{1}(s) p_{2}(\mathrm{~s}) / p_{3}(\mathrm{~s})$

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: