Given the state-space representation of the system model, construct the appropriate block diagram, and directly use it
Question:
Given the state-space representation of the system model, construct the appropriate block diagram, and directly use it to find the transfer matrix.
\(\left\{\begin{array}{l}\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} u \\ \mathbf{y}=\mathbf{C x}+\mathbf{D} u\end{array}\right.\)
where \[\mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}, \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -3 \end{array}\right], \mathbf{B}=\left[\begin{array}{l}
0 \\
1 \end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \end{array}\right], \mathbf{D}=\left[\begin{array}{l}
0 \\
0 \end{array}\right], u=u\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Modeling And Analysis Of Dynamic Systems
ISBN: 9781138726420
3rd Edition
Authors: Ramin S. Esfandiari, Bei Lu
Question Posted: