Given the state-space representation of the system model, construct the appropriate block diagram, and directly use it

Question:

Given the state-space representation of the system model, construct the appropriate block diagram, and directly use it to find the transfer matrix.

\(\left\{\begin{array}{l}\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} u \\ \mathbf{y}=\mathbf{C x}+\mathbf{D} u\end{array}\right.\)
where \[\mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}, \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -3 \end{array}\right], \mathbf{B}=\left[\begin{array}{l}
0 \\
1 \end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \end{array}\right], \mathbf{D}=\left[\begin{array}{l}
0 \\
0 \end{array}\right], u=u\]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: