Determine the state equations of the control system shown in Fig. 1.6. 1) (frac{d}{d t}left[begin{array}{l}x_{1} x_{2}

Question:

Determine the state equations of the control system shown in Fig. 1.6.

1) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -3\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
2) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
3) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 1\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
4) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 2\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)

Figure 1.6

image text in transcribed

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: