Determine the state equations of the control system shown in Fig. 1.6. 1) (frac{d}{d t}left[begin{array}{l}x_{1} x_{2}
Question:
Determine the state equations of the control system shown in Fig. 1.6.
1) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -3\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
2) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
3) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 1\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
4) \(\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 2\end{array}ight]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}ight]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}ight] u(t)\)
Figure 1.6
Step by Step Answer:
Feedback Control Systems Analysis And Design Practice Problems Methods And Solutions
ISBN: 9783030952761
1st Edition
Authors: Mehdi Rahmani-Andebili