Given the line-to-ground voltages (V_{a g}=280 angle 0^{circ}, V_{b g}=250 angle-110^{circ}), and (V_{c g}=290 angle 130^{circ}) volts,

Question:

Given the line-to-ground voltages \(V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ}\), and \(V_{c g}=290 \angle 130^{\circ}\) volts, calculate

(a) the sequence components of the lineto-ground voltages, denoted \(V_{\mathrm{Lg} 0}, V_{\mathrm{Lg} 1}\) and \(V_{\mathrm{Lg} 2}\);

(b) line-to-line voltages \(V_{\mathrm{LL} 0}, V_{\mathrm{LL} 1}\), and \(V_{\mathrm{LL} 2}\); and

(c) sequence components of the line-to-line voltages \(V_{\mathrm{LL} 0}=0, V_{\mathrm{LL} 1}\), and \(V_{\mathrm{LL} 2}\). Also, verify the following general relation: \(V_{\mathrm{LL} 0}=0, V_{\mathrm{LL} 1}=\sqrt{3} V_{\mathrm{Lg} 1} \angle+30^{\circ}\), and \(V_{\mathrm{LL} 2}=\sqrt{3} V_{\mathrm{Lg} 2} \angle-30^{\circ}\) volts.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Power System Analysis And Design

ISBN: 9781305632134

6th Edition

Authors: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma

Question Posted: