Prove that for (x>0) the function (int_{x}^{infty} e^{-frac{z^{z}}{2}} d z) satisfies the inequalities [frac{x}{1+x^{2}} e^{-frac{1}{2} x^{2}} leqslant

Question:

Prove that for \(x>0\) the function \(\int_{x}^{\infty} e^{-\frac{z^{z}}{2}} d z\) satisfies the inequalities

\[\frac{x}{1+x^{2}} e^{-\frac{1}{2} x^{2}} \leqslant \int_{x}^{\infty} e^{-\frac{1}{2} z^{2}} d z \leqslant \frac{1}{x} e^{-\frac{1}{2} x^{3}}\]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Theory Of Probability

ISBN: 9781351408585

6th Edition

Authors: Boris V Gnedenko

Question Posted: