Prove that for (x>0) the function (int_{x}^{infty} e^{-frac{z^{z}}{2}} d z) satisfies the inequalities [frac{x}{1+x^{2}} e^{-frac{1}{2} x^{2}} leqslant
Question:
Prove that for \(x>0\) the function \(\int_{x}^{\infty} e^{-\frac{z^{z}}{2}} d z\) satisfies the inequalities
\[\frac{x}{1+x^{2}} e^{-\frac{1}{2} x^{2}} \leqslant \int_{x}^{\infty} e^{-\frac{1}{2} z^{2}} d z \leqslant \frac{1}{x} e^{-\frac{1}{2} x^{3}}\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: