Using probabilistic arguments, prove the identity ((A>a)) : [ 1+frac{A-a}{A-1}+frac{(A-a)(A-a-1)}{(A-1)(A-2)}+ldots+frac{(A-a) ldots 2 cdot 1}{(A-1) ldots(a+1) a}=frac{A}{a} ]
Question:
Using probabilistic arguments, prove the identity \((A>a)\) :
\[ 1+\frac{A-a}{A-1}+\frac{(A-a)(A-a-1)}{(A-1)(A-2)}+\ldots+\frac{(A-a) \ldots 2 \cdot 1}{(A-1) \ldots(a+1) a}=\frac{A}{a} \]
An urn has \(A\) balls, or which \(a\) are white. The balls are drawn at random without replacement. Find the probability that sooner or later a white ball will be encountered.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: