Go back

Getting Started With Python Data Analysis(1st Edition)

Authors:

Phuong Vo.T.H , Martin Czygan

Free getting started with python data analysis 1st edition phuong vo.t.h , martin czygan 1785285114, 978-1785285110
6 ratings
Cover Type:Hardcover
Condition:Used

In Stock

Shipment time

Expected shipping within 2 Days
Access to 30 Million+ solutions Free
Ask 50 Questions from expert AI-Powered Answers
7 days-trial

Total Price:

$0

List Price: $38.99 Savings: $38.99(100%)
Access to 30 Million+ solutions
Ask 50 Questions from expert AI-Powered Answers 24/7 Tutor Help Detailed solutions for Getting Started With Python Data Analysis

Price:

$9.99

/month

Book details

ISBN: 1785285114, 978-1785285110

Book publisher: Packt Publishing

Get your hands on the best-selling book Getting Started With Python Data Analysis 1st Edition for free. Feed your curiosity and let your imagination soar with the best stories coming out to you without hefty price tags. Browse SolutionInn to discover a treasure trove of fiction and non-fiction books where every page leads the reader to an undiscovered world. Start your literary adventure right away and also enjoy free shipping of these complimentary books to your door.

Book Summary: Learn to use powerful Python libraries for effective data processing and analysisAbout This BookLearn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and MatplotlibCreate, manipulate, and analyze your data to extract useful information to optimize your systemA hands-on guide to help you learn data analysis using PythonWho This Book Is ForIf you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you.What You Will LearnUnderstand the importance of data analysis and get familiar with its processing stepsGet acquainted with Numpy to use with arrays and array-oriented computing in data analysisCreate effective visualizations to present your data using MatplotlibProcess and analyze data using the time series capabilities of PandasInteract with different kind of database systems, such as file, disk format, Mongo, and RedisApply the supported Python package to data analysis applications through examplesExplore predictive analytics and machine learning algorithms using Scikit-learn, a Python libraryIn DetailData analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis.With this book, we will get you started with Python data analysis and show you what its advantages are.The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems.Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples.Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn.Style and approachThis is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.