The magnetic field of an infinite straight wire carrying a steady current I can be obtained from
Question:
The magnetic field of an infinite straight wire carrying a steady current I can be obtained from the displacement current term in the Ampere/Maxwell law, as follows: Picture the current as consisting of a uniform line charge λ moving along the z axis at speed v (so that I = λv), with a tiny gap of length ε, which reaches the origin at time t = 0. In the next instant (up to t = ε/v) there is no real current passing through a circular AmperJan loop in the xy plane, but there is a displacement current, due to the "missing" charge in the gap.
(a) Use Coulomb's law to calculate the z component of the electric field, for points in the xy plane a distance s from the origin, due to a segment of wire with uniform density – λ extending from z1 = vt – ε to z2 = vt.
(b) Determine the flux of this electric field through a circle of radius a in the xy plane.
(c) Find the displacement current through this circle. Show that Id is equal to I, in the limit as the gap width (ε) goes to zero.
Step by Step Answer: