Find the error in the proof of the following theorem. Theorem: Let R be a relation on
Question:
"Theorem": Let R be a relation on a set A that is symmetric and transitive. Then R is reflexive.
"Proof ": Let a ∈ A. Take an element b ∈ A such that (a, b) ∈ R. Because R is symmetric, we also have (b, a) ∈ R. Now using the transitive property, we can conclude that (a, a) ∈ R because (a, b) ∈ R and (b, a) ∈ R.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Discrete Mathematics and Its Applications
ISBN: 978-0073383095
7th edition
Authors: Kenneth H. Rosen
Question Posted: