For each of the following lists of premises, derive the conclusion and supply the justification for it.
Question:
For each of the following lists of premises, derive the conclusion and supply the justification for it. There is only one possible answer for each problem.
(1) 1. G ⊃ F
2. ∼ F
3. _______ ____
(2) 1. S
2. S ⊃ M
3. _______ ____
(3) 1. R ⊃ D
2. E ⊃ R
3. _______ ____
(4) 1. B ∨ C
2. ∼ B
3. _______ ____
(5) 1. N
2. N ∨ F
3. N ⊃ K
4. _______ ____
(6) 1. ∼J ∨ P
2. ∼J
3. S ⊃ J
4. _______ ____
(7) 1. H ⊃ D
2. F ⊃ T
3. F ⊃ H
4. _______ ____
(8) 1. S ⊃ W
2. ∼ S
3. S ∨ N
4. _______ ____
(9) 1. F ⊃ ∼ A
2. N ⊃ A
3. ∼ F
4. ∼ A
5. _______ ____
(10) 1. H ⊃ A
2. A
3. A ∨ M
4. G ⊃ H
5. _______ ____
(11) 1. W ∨ B
2. W
3. B ⊃ T
4. W ⊃ A
5. _______ ____
(12) 1. K ⊃ ∼ R
2. ∼ R
3. R ∨ S
4. R ⊃ T
5. _______ ____
(13) 1. ∼C ⊃ ∼ F
2. L ⊃ F
3. ∼ ∼ F
4. F ∨ ∼ L
5. _______ ____
(14) 1. N ⊃ ∼ E
2. ∼ ∼ S
3. ∼E ∨ ∼S
4. ∼S ∨ N
5. _______ ____
(15) 1. ∼R ⊃ ∼ T
2. ∼ T ∨ B
3. C ⊃ ∼ R
4. ∼ C
5. _______ ____
(16) 1. ∼ K
2. ∼ K ⊃ ∼ P
3. ∼ K ∨ G
4. G ⊃ Q
5. _______ ____
(17) 1. F ∨ (A ⊃ C)
2. A ∨ (C ⊃ F)
3. A
4. ∼ F
5. _______ ____
(18) 1. (R ⊃ M) ⊃ D
2. M ⊃ C
3. D ⊃ (M ∨ E)
4. ∼ M
5. _______ ____
(19) 1. (S ∨ C) ⊃ L
2. ∼ S
3. ∼ L
4. S ⊃ (K ⊃ L)
5. _______ ____
(20) 1. (A ∨ W) ⊃ (N ⊃ Q)
2. Q ⊃ G
3. ∼ A
4. (Q ⊃ G) ⊃ (A ∨ N)
5. _______ ____
Step by Step Answer:
A Concise Introduction to Logic
ISBN: 978-1305958098
13th edition
Authors: Patrick J. Hurley, Lori Watson