Use truth tables to determine whether the following pairs of symbolized statements are logically equivalent, contradictory, consistent,
Question:
Use truth tables to determine whether the following pairs of symbolized statements are logically equivalent, contradictory, consistent, or inconsistent. First, determine whether the pairs of propositions are logically equivalent or contradictory; then, if these relations do not apply, determine if they are consistent or inconsistent.
1. ∼D ∨ B…………………………..∼(D ∙ B)
2. F ∙ M……………………………..∼(F ∨ M)
3. ∼K ⊃ L…………………………..K ⊃ ∼ L
4. R ∨ ∼S……………………………S ∙ ∼ R
5. ∼ A ≡ X…………………………..(X ∙ ∼ A) ∨ (A ∙ ∼ X)
6. H ≡ ∼ G…………………………..(G ∙ H) ∨ (∼G ∙ ∼ H)
7. (E ⊃ C) ⊃ L………………………E ⊃ (C ⊃ L)
8. N ∙ (A ∨ ∼E)……………………... ∼A ∙ (E ∨ ∼ N)
9. M ⊃ (K ⊃ P)………………………(K ∙ M) ⊃ P
10. W ≡ (B ∙ T)………………………W ∙ (T ⊃ ∼ B)
11. G ∙ (E ∨ P)………………………∼ (G ∙ E) ∙ ∼ (G ∙ P)
12. R ∙ (Q ∨ S)……………………...(S ∨ R) ∙ (Q ∨ R)
13. H ∙ (K ∨ J)……………………….(J ∙ H) ∨ (H ∙ K)
14. Z ∙ (C ≡ P)……………………….C ≡ (Z ∙ ∼ P)
15. Q ⊃ ∼ (K ∨ F)………………….(K ∙ Q) ∨ (F ∙ Q)
Step by Step Answer:
A Concise Introduction to Logic
ISBN: 978-1305958098
13th edition
Authors: Patrick J. Hurley, Lori Watson