(i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the following linear systems....
Question:
a. 0.03x1 + 58.9x2 = 59.2,
5.31x1 − 6.10x2 = 47.0
Actual solution (10, 1)t .
b. 3.3330x1 + 15920x2 + 10.333x3 = 7953,
2.2220x1 + 16.710x2 + 9.6120x3 = 0.965,
−1.5611x1 + 5.1792x2 − 1.6855x3 = 2.714
Actual solution (1, 0.5,−1)t .
c. 1.19x1 + 2.11x2 − 100x3 + x4 = 1.12,
14.2x1 − 0.122x2 + 12.2x3 − x4 = 3.44,
100x2 − 99.9x3 + x4 = 2.15,
15.3x1 + 0.110x2 − 13.1x3 − x4 = 4.16
Actual solution (0.17682530, 0.01269269,−0.02065405,−1.18260870)t .
d. πx1 − ex2 + √2x3 − √3x4 = √11,
π2x1 + ex2 − e2x3 + 3/7x4 = 0,
√5x1 − √6x2 + x3 − √2x4 = π,
π3x1 + e2x2 − √7x3 + 1/9 x4 = √2.
Actual solution (0.78839378,−3.12541367, 0.16759660, 4.55700252)t .
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: