(i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the following linear systems....

Question:

(i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the following linear systems. (ii) Then use one iteration of iterative refinement to improve the approximation, and compare the approximations to the actual solutions.
a. 0.03x1 + 58.9x2 = 59.2,
5.31x1 − 6.10x2 = 47.0
Actual solution (10, 1)t .
b. 3.3330x1 + 15920x2 + 10.333x3 = 7953,
2.2220x1 + 16.710x2 + 9.6120x3 = 0.965,
−1.5611x1 + 5.1792x2 − 1.6855x3 = 2.714
Actual solution (1, 0.5,−1)t .
c. 1.19x1 + 2.11x2 − 100x3 + x4 = 1.12,
14.2x1 − 0.122x2 + 12.2x3 − x4 = 3.44,
100x2 − 99.9x3 + x4 = 2.15,
15.3x1 + 0.110x2 − 13.1x3 − x4 = 4.16
Actual solution (0.17682530, 0.01269269,−0.02065405,−1.18260870)t .
d. πx1 − ex2 + √2x3 − √3x4 = √11,
π2x1 + ex2 − e2x3 + 3/7x4 = 0,
√5x1 − √6x2 + x3 − √2x4 = π,
π3x1 + e2x2 − √7x3 + 1/9 x4 = √2.
Actual solution (0.78839378,−3.12541367, 0.16759660, 4.55700252)t .
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Numerical Analysis

ISBN: 978-0538733519

9th edition

Authors: Richard L. Burden, J. Douglas Faires

Question Posted: