Let X be a zero- mean, unit- variance, Gaussian random variable and let Y be a chi-
Question:
One way to accomplish this is to define an auxiliary random variable, U = Y, and then find the joint PDF of T and U using the 2 × 2 transformation techniques outlined in Section 5.9. Once the joint PDF is found, the marginal PDF of T can be found by integrating out the unwanted variable U. This is the form of the statistic
Of Equation (7.41) where the sample mean is Gaussian and the sample variance is chi- square (by virtue of the results of Exercise 7.39) assuming that the underlying are Gaussian.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Probability and Random Processes With Applications to Signal Processing and Communications
ISBN: 978-0123869814
2nd edition
Authors: Scott Miller, Donald Childers
Question Posted: