A spherical particle of radius r 1 experiences uniform thermal generation at a rate of q. The
Question:
A spherical particle of radius r1 experiences uniform thermal generation at a rate of q. The particle is encapsulated by a spherical shell of outside radius r2 that is cooled by ambient air. The thermal conductivities of the particle and shell are k1 and k2, respectively, where k1 = 2k2.
(a) By applying the conservation of energy principle to spherical control volume A, which is placed at an arbitrary location within the sphere, determine a relationship between the temperature gradient, dT/dr, and the local radius, r, for 0 < r < r).
(b) By applying the conservation of energy principle to spherical control volume B, which is placed at an arbitrary location within the spherical shell, determine a relationship between the temperature gradient, dT/dr, and the local radius, r, for r1 < r < r2.
(c) On T - r coordinates, sketch the temperature distribution over the range 0 < r1 < r2.
DistributionThe word "distribution" has several meanings in the financial world, most of them pertaining to the payment of assets from a fund, account, or individual security to an investor or beneficiary. Retirement account distributions are among the most...
Step by Step Answer:
Fundamentals of Heat and Mass Transfer
ISBN: 978-0471457282
6th Edition
Authors: Incropera, Dewitt, Bergman, Lavine