Consider the set G = {1, i, j, k} with multiplication given by i 2 = j

Question:

Consider the set G = {±1, ±i, ±j, ±k} with multiplication given by i2 = j2 = k2 = -1; ij = k; jk = i, ki =j; ji = -k, kj = -i, ik = -j, and the usual rules for multiplying by ± 1. Show that G is a group isomorphic to the quaternion group Q8.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: