Let F(x, y) = x1exy. Show that 2 F/x y = yexy and use the result

Question:

Let F(x, y) = x−1exy. Show that ∂2F/∂x ∂y = yexy and use the result of Exercise 52 to evaluate SSR" yexy da for R = [1, 3] × [0, 1].


Data From Exercise 52

Prove the following extension of the Fundamental Theorem of Calculus to two variables: If ∂2F/∂x ∂y = ƒ(x, y), then

f R f(x,y) dA= F(b,d) - F(a,d) - F(b,c) + F(a, c)

where R = [a, b] × [c, d].

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Calculus

ISBN: 9781319055844

4th Edition

Authors: Jon Rogawski, Colin Adams, Robert Franzosa

Question Posted: