In an I J contingency table, let ij denote local odds ratio (2.10), and let
Question:
In an I × J contingency table, let θij denote local odds ratio (2.10), and let θ̂ij denote its sample value.
a. show that asymp. cov(√n log θ̂ij, √n log θ̂i+1, j) = –[π–1i+1, j + π–1i+1, j+1].
b. Show that asymp. cov(√n log θ̂ij, √nlog θ̂i+1, j+1) = π–1i+1, j+1.
c. When θ̂ij and θ̂hk use mutually exclusive sets of cells, show that asymp. cov(√n log θ̂ij, √n log θ̂hk) = 0.
d. State the asymptotic distribution of log θ̂ij.
DistributionThe word "distribution" has several meanings in the financial world, most of them pertaining to the payment of assets from a fund, account, or individual security to an investor or beneficiary. Retirement account distributions are among the most...
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: