Distance metric learning aims to learn a distance metric that best describe the distance between two data

Question:

Distance metric learning aims to learn a distance metric that best describe the distance between two data points. One of the most commonly used distance metric is Mahalanobis distance. It is of the form

\[d(\mathbf{x}, \mathbf{y})^{2}=(\mathbf{x}-\mathbf{y})^{T} \mathbf{M}(\mathbf{x}-\mathbf{y})\]

where \(\mathbf{x}\) and \(\mathbf{y}\) are feature vectors for two different data points. Now, supposing we have \(n\) training examples \(\left(\mathbf{x}_{i}, y_{i}ight),(i=1,2, \ldots, n)\), we aim to learn the matrix \(\mathbf{M}\) from the data. Research and describe one supervised method and one unsupervised method to learn the matrix \(\mathbf{M}\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Data Mining Concepts And Techniques

ISBN: 9780128117613

4th Edition

Authors: Jiawei Han, Jian Pei, Hanghang Tong

Question Posted: