A common strategy for handling a case in which an observation is missing data for one or
Question:
A common strategy for handling a case in which an observation is missing data for one or more variables is to fill those missing variables with 0s and add a variable to the model that takes the value 1 for that one observation and 0 for all other observations. Show that this “strategy” is equivalent to discarding the observation as regards the computation of b but it does have an effect on R2. Consider the special case in which X contains only a constant and one variable. Show that replacing missing values of x with the mean of the complete observations has the same effect as adding the new variable.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: