Let (W) be a standard Brownian motion, (a>1), and (tau) the stopping time (tau=inf left{t: e^{W_{t}-t /
Question:
Let \(W\) be a standard Brownian motion, \(a>1\), and \(\tau\) the stopping time \(\tau=\inf \left\{t: e^{W_{t}-t / 2}>a\right\}\). Prove that, \(\forall \lambda \geq 1 / 2\),
\[\mathbb{E}\left(\mathbb{1}_{\{\tau<\infty\}} \exp \left(\lambda W_{\tau}-\frac{1}{2} \lambda^{2} \tau\right)=1\right.\]
\[\mathbb{E}\left(\mathbb{1}_{\tau<\infty} \exp \left(\lambda W_{\tau}-\frac{1}{2} \lambda^{2} \tau\right)\right)=\mathbf{W}^{(\lambda)}(\tau<\infty)\]
The process \(\left(W_{t}-\frac{1}{2} t, t \geq 0\right)\) is, under \(\mathbf{W}^{(\lambda)}\), a BM with drift \(\lambda-\frac{1}{2}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Mathematical Methods For Financial Markets
ISBN: 9781447125242
1st Edition
Authors: Monique Jeanblanc, Marc Yor, Marc Chesney
Question Posted: