Prove that none of the following systems have limit cycles: (a) x = y, y
Question:
Prove that none of the following systems have limit cycles:
(a) ˙ x = y, ˙ y = −x − (1 + x2 + x4)y;
(b) ˙ x = x − x2 + 2y2, ˙ y = y(x + 1);
(c) ˙ x = y2 − 2x, ˙ y = 3 − 4y − 2x2y;
(d) ˙ x = −x + y3 − y4, ˙ y = 1 − 2y − x2y + x4;
(e) ˙ x = x2 − y − 1, ˙ y = y(x − 2);
(f) ˙ x = x − y2(1 + x3), ˙ y = x5 − y;
(g) ˙ x = 4x − 2x2 − y2, ˙ y = x(1 + xy).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Dynamical Systems With Applications Using Mathematica
ISBN: 978-3319870892
1st Edition
Authors: Stephen Lynch
Question Posted: