Consider the [102] model [begin{aligned}d S_{t} & =mu_{S} S_{t} d t+sqrt{Y_{t}} S_{t} d B_{t} d Y_{t} &
Question:
Consider the [102] model
\[\begin{aligned}d S_{t} & =\mu_{S} S_{t} d t+\sqrt{Y_{t}} S_{t} d B_{t} \\d Y_{t} & =\mu_{Y} Y_{t} d t+\xi Y_{t} d W_{t}\end{aligned}\]
The volatility process is \(\sqrt{Y_{t}}\). Show that the volatility process has moments
\[\begin{aligned}& \mathbf{E}\left[\sqrt{Y_{t}}\right]=\sqrt{Y_{0}} e^{\frac{1}{2} \mu_{Y} t-\frac{1}{8} \xi^{2} t} \\& V\left[\sqrt{Y_{t}}\right]={\sqrt{Y_{0}}}^{2} e^{\mu_{Y} t}\left(1-e^{-\frac{1}{4} \xi^{2} t}\right)\end{aligned}\]
and study what happens with these moments when \(t \rightarrow \infty\) depending on the values of the parameters in the model.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Quantitative Finance
ISBN: 9781118629956
1st Edition
Authors: Maria Cristina Mariani, Ionut Florescu
Question Posted: