Prove directly that, for each (t geq 0), [mathbb{E}left(e^{-z T(t)} ight)=int_{0}^{infty} e^{-z s} f_{T(t)}(s) d s=e^{-t z^{1

Question:

Prove directly that, for each \(t \geq 0\),

\[\mathbb{E}\left(e^{-z T(t)}\right)=\int_{0}^{\infty} e^{-z s} f_{T(t)}(s) d s=e^{-t z^{1 / 2}}\]

where \((T(t), t \geq 0)\) is the Lévy subordinator.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Quantitative Finance

ISBN: 9781118629956

1st Edition

Authors: Maria Cristina Mariani, Ionut Florescu

Question Posted: